Cho tam giác ABC vuông cân tại A, đường cao AH (H BC ). Có M và N lần
lượt là hình chiếu của H trên AB và AC.
a) Tứ giác AMHN là hình gì?
b) Gọi E là điểm đối xứng với B qua A; F là điểm đối xứng với C qua A. Tứ giác BCEF là hình
gì? Vì sao?
c) Đường thẳng BN cắt CE tại K.Chứng minh
ck=1/3bc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\)
Do đó: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà \(\widehat{MBC}=\widehat{NCB}\)
nên BMNC là hình thang cân
b: Xét tứ giác AHCD có
N là trung điểm của đường chéo AC
N là trung điểm của đường chéo HD
Do đó: AHCD là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AHCD là hình chữ nhật
c: Ta có: ΔABC cân tại A
mà AH là đường cao ứng với cạnh đáy BC
nên H là trung điểm của BC
Suy ra: BH=CH
mà CH=AD
nên BH=AD
Xét tứ giác ABHD có
AD//BH
AD=BH
Do đó: ABHD là hình bình hành
d: Để AHCD trở thành hình vuông thì AH=CH
hay \(AH=\dfrac{BC}{2}\)
Xét ΔABC có
AH là đường trung tuyến ứng với cạnh BC
\(AH=\dfrac{BC}{2}\)
Do đó: ΔABC vuông tại A
hay \(\widehat{BAC}=90^0\)
a: Xét tứ giác AEHD có
\(\widehat{AEH}=\widehat{ADH}=\widehat{DAE}=90^0\)
Do đó: AEHD là hình chữ nhật
a: Xét tứ giác AHBE có
M là trung điểm của AB
M là trung điểm của HE
Do đó: AHBE là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBE là hình chữ nhật
b: Xét tứ giác ABFC có
H là trung điểm của AF
H là trung điểm của BC
Do đó:ABFC là hình bình hành
mà AB=AC
nên ABFC là hình thoi
a) Ta có: E đối xứng với H qua M (gt)
=> M là trung điểm của HE
Xét tứ giác AHBE có:
MA = MB (M là trung điểm của AB)
ME = MH (M là trung điểm của HE)
\(\widehat{AHB}=90^o\)(Vì AH là đường cao vuông góc với BC)
=> AHBE là hcn (đpcm)
b, Vì ABC là tam giác cân
=> AB = AC (1)
Vì F đối xứng với A qua H
=> FB = AB ; FC = AC (2)
Từ (1) và (2) => AB = AC = FC = FB
Xét tứ giác ABFC có: AB = AC = FC = FB (cm trên)
=> ABFC là hình thoi (đpcm)
hình mình vẽ tượng trưng thôi nha
đề của bạn 1 số chỗ hơi nhầm đó nha.
a)
dựa theo công thức tính diện tích tam giác, ta có:
S\(\Delta\)ABC = \(\dfrac{1}{2}.12.16=96\left(cm^2\right)\)
ta có:
AN = NC ; AM = MB
=> MN là đường trung bình của tam giác ABC
do đó MN//= \(\dfrac{1}{2}\)BC
=> MN = 6 cm
b) ta có:
AM = MB ; HM = ME
=> AHBE là hình bình hành
Mà ta lại thấy góc AHB vuông
=> AHBE là hình chữ nhật
c) ta có:
AH= HF ; CH = HB
=> ABFC là hình bình hành
Mà ta thấy AF \(\perp\) CB
suy ra ABFC là hình thoi.
d) mk k hỉu cái đề cho lắm nên thôi nha.
chúc bạn học tốt
a: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=12\cdot8=96\left(cm^2\right)\)
Xét ΔBAC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN=BC/2=6(cm)
b: Xét tứ giác AHBE có
M là trung điểm của AB
M là trung điểm của HE
Do đó:AHBE là hình bình hành
mà \(\widehat{AHB}=90^0\)
nên AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm của AF
H là trung điểm của BC
Do đó: ABFC là hình bình hành
mà AB=AC
nên ABFC là hình thoi
a: Xét tứ giác AMHN có
\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)
Do đó: AMHN là hình chữ nhật
mà AM=AN
nên AMHN là hình vuông
b: Xét tứ giác CEFB có
A là trung điểm của CF
A là trung điểm của EB
Do đó CEFB là hình bình hành
mà CF=EB
nên CEFB là hình chữ nhật
mà CF⊥EB
nên CEFB là hình vuông