K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2019

khó nhỉ

1 tháng 10 2017

1) (5+54)+(52+55)+...........+(52003+52006)= 5(1+53)+52(1+53)+..............+52003(1+53)

= (5+52+..........+52003).126 ->S chia hết cho 126

2, 7+73+................+71997+71999 = 7(1+72)+..............+71997(1+72)

= (7+...............+71997).50-> chia hết cho 5

= 7(1+72+.......+71998) -> chia hết cho 7

-> chia hết cho 35

22 tháng 2 2023

tự lực mà làm mn đừng chỉ

 

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

23 tháng 5 2022

\(A=\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2+\left(\dfrac{1}{4}\right)^2+...+\left(\dfrac{1}{2013}\right)^2\)

\(A=\left(\dfrac{1}{2+3+4+...+2013}\right)^2\)

\(A=\left(\dfrac{1}{\left(2013-2\right)+1}\right)^2\)

\(A=\left(\dfrac{1}{2012}\right)^2\)

\(A=\dfrac{1}{2012\cdot2012}\)

\(\Rightarrow A=\dfrac{1}{2012}< \dfrac{3}{4}\)

30 tháng 1 2016

làm ơn tách ra giùm mk

30 tháng 1 2016

nguyên một hàng mk đọc ko hỉu????????????

không hiểu......>><

AH
Akai Haruma
Giáo viên
15 tháng 9 2021

Lần sau bạn lưu ý gõ đề bằng bộ gõ công thức toán $(\sum)$ để được hỗ trợ tốt hơn.

Lời giải:
Ta có:

$\frac{1}{3^2}< \frac{1}{2.3}$

$\frac{1}{4^2}< \frac{1}{3.4}$

...........

$\frac{1}{1990^2}< \frac{1}{1989.1990}$

Cộng tất cả theo vế:

$\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{1989.1990}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{1989}-\frac{1}{1990}$

$=\frac{1}{2}-\frac{1}{1990}< \frac{1}{2}$

$\Rightarrow \frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1990^2}< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}$

Ta có đpcm.

4 tháng 9 2021

a) \(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(\Rightarrow2A=2+2^2+2^3+2^4+...+2^{2008}\)

b) Ta có: \(2A=2+2^2+2^3+2^4+...+2^{2008}\)

\(\Rightarrow A=2A-A=2+2^2+2^3+2^4+...+2^{2008}-1-2-2^2-...-2^{2007}=2^{2008}-1\)

AH
Akai Haruma
Giáo viên
4 tháng 9 2021

Lời giải:
a.

$A=1+2^1+2^2+2^3+....+2^{2007}$

$2A=1.2+2^1.2+2^2.2+2^3.2+....+2^{2007}.2$

$2A=2+2^2+2^3+2^4+....+2^{2008}$

b.

$A=2A-A=(2+2^2+2^3+2^4+...+2^{2008})-(1+2+2^2+...+2^{2007})$

$=2^{2008}-1$ (đpcm)

P/s: Lần sau bạn chú ý viết đề bằng công thức toán.