Cho hệ phương trình \(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\) (với m là tham số)
Tìm m để hệ đã cho có nghiệm (x;y) thỏa mãn: x2 + y2 + 3 đạt giá trị nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}3x+2y=10\\2x-y=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3x+2y=10\\4x-2y=2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=10+2m\\3x+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\3\left(\dfrac{10+2m}{7}\right)+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\\dfrac{30+6m}{7}+2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10+2m}{7}\\y=\dfrac{40-6m}{14}\end{matrix}\right.\)
Để \(x>0\) \(\Leftrightarrow\dfrac{10+2m}{7}>0\)
\(\Leftrightarrow m>-5\) (1)
Để \(y>0\) \(\Leftrightarrow40-6m< 0\)
\(\Leftrightarrow m>\dfrac{20}{3}\) (2)
\(\left(1\right);\left(2\right)\rightarrow m>\dfrac{20}{3}\)
Vậy \(m>\dfrac{20}{3}\) thì \(x>0;y< 0\)
Để hệ phương trình có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Khi \(m\notin\left\{1;-1\right\}\) thì \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m\left(m+1-my\right)+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+1-my\\m^2+m-m^2y+y-2m=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(-m^2+1\right)=-m^2+m\\x=m+1-my\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m^2-m}{m^2-1}=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-\dfrac{m^2}{m+1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m}{m+1}\\x=\dfrac{\left(m+1\right)^2-m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
Để \(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\) thì \(\left\{{}\begin{matrix}\dfrac{2m+1}{m+1}>=2\\\dfrac{m}{m+1}>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2\left(m+1\right)}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{-1}{m+1}>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-\dfrac{1}{m+1}>=0\\-\dfrac{1}{m+1}>=0\end{matrix}\right.\Leftrightarrow m+1< 0\)
=>m<-1
a) Thay m=-1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}3x+y=7\\x+y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2\\x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=4\end{matrix}\right.\)
Vậy: Khi m=-1 thì (x,y)=(1;4)
b) Ta có: \(\left\{{}\begin{matrix}3x+y=2m+9\\x+y=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(5-y\right)+y=2m+9\\x=5-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15-3y+y=2m+9\\x=5-y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=2m-6\\x=5-y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-m+3\\x=5-\left(-m+3\right)=5+m-3=m+2\end{matrix}\right.\)
Ta có: \(x^2+2y^2=18\)
\(\Leftrightarrow\left(m+2\right)^2+2\cdot\left(-m+3\right)^2=18\)
\(\Leftrightarrow m^2+4m+4+2\left(m^2-6m+9\right)-18=0\)
\(\Leftrightarrow m^2+4m-14+2m^2-12m+18=0\)
\(\Leftrightarrow3m^2-8m+4=0\)
\(\Leftrightarrow3m^2-2m-6m+4=0\)
\(\Leftrightarrow m\left(3m-2\right)-2\left(3m-2\right)=0\)
\(\Leftrightarrow\left(3m-2\right)\left(m-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3m-2=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3m=2\\m=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{2}{3}\\m=2\end{matrix}\right.\)
x-y=4+2m và 4x+y=3m-4
=>5x=5m và x-y=2m+4
=>x=m và y=m-2m-4=-m-4
xy=-5
=>m(-m-4)=-5
=>m^2+4m=5
=>m^2+4m-5=0
=>(m+5)(m-1)=0
=>m=1 hoặc m=-5
Bài 1:
- Với \(m=0\) ta có:
\(\left\{{}\begin{matrix}0x+y=3.0-1\\x+0y=0+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
Vậy với \(m=0\) hệ đã cho có nghiệm duy nhất.
- Với \(m\ne0\), ta có:
\(\left\{{}\begin{matrix}mx+y=3m-1\\x+my=m+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-m^2x-my=-3m^2+m\\x+my=m+1\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1-m^2\right)x=-3m^2+2m+1\left(1\right)\)
- Với \(m=1\). Thế vào (1) ta được:
\(0x=0\) (phương trình vô số nghiệm).
\(\left(2\right)\Rightarrow x+y=2\Leftrightarrow y=2-x\)
- Vậy với \(m=1\) thì hệ đã cho có vô số nghiệm với nghiệm tổng quát có dạng \(\left\{{}\begin{matrix}x\in R\\y=2-x\end{matrix}\right.\)
Với \(m=-1\). Thế vào (1) ta được:
\(0x=-4\) (phương trình vô nghiệm)
Vậy với \(m=-1\) thì hệ đã cho vô nghiệm
Với \(m\ne\pm1,0\).
\(\left(1\right)\Leftrightarrow x=\dfrac{-3m^2+2m+1}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{-3m^2+3m-m+1}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{3m\left(1-m\right)+\left(1-m\right)}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{\left(1-m\right)\left(3m+1\right)}{\left(1-m\right)\left(1+m\right)}\)
\(\Leftrightarrow x=\dfrac{3m+1}{m+1}\)
Thay vào (2) ta được:
\(\dfrac{3m+1}{m+1}+my=m+1\)
\(\Leftrightarrow3m+1+my\left(m+1\right)=\left(m+1\right)^2\)
\(\Leftrightarrow3m+1+my\left(m+1\right)=m^2+2m+1\)
\(\Leftrightarrow my\left(m+1\right)=m^2-m\)
\(\Leftrightarrow y=\dfrac{m\left(m-1\right)}{m\left(m+1\right)}\)
\(\Leftrightarrow y=\dfrac{m-1}{m+1}\)
Vậy với \(m\ne\pm1\) thì hệ đã cho có nghiệm duy nhất \(\left(x;y\right)=\left(\dfrac{3m+1}{m+1};\dfrac{m-1}{m+1}\right)\).
Bài 2:
\(\left\{{}\begin{matrix}x-\left(m+1\right)y=1\left(2\right)\\4x-y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4x+4\left(m+1\right)y=-4\\4x-y=-2\left(1\right)\end{matrix}\right.\)
\(\Rightarrow4\left(m+1\right)y-y=-6\)
\(\Leftrightarrow\left(4m+3\right)y=-6\)
\(\Rightarrow y=-\dfrac{6}{4m+3}\)
Để y nguyên thì:
\(6⋮\left(4m+3\right)\)
\(\Rightarrow\left(4m+3\right)\inƯ\left(6\right)\)
\(\Rightarrow4m+3\in\left\{1;2;3;6;-1;-2;-3;-6\right\}\)
4m+3 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
m | -1/2 (loại) | -1/4 (loại) | 0 (nhận) | 3/4 (loại) | -1 (nhận) | -5/4 (loại) | -3/2 (loại) | -9/4 (loại) |
\(\Rightarrow m\in\left\{0;-1\right\}\)
Với \(m=0\) ta có \(y=-\dfrac{6}{4.0+3}=-2\)
Thay vào (1) ta được:
\(4x-\left(-2\right)=-2\Leftrightarrow x=-1\)
Thử lại \(x=-1;y=-2\) cho (2) ta thấy phương trình nghiệm đúng.
Vậy \(\left(x;y\right)=\left(-1;-2\right)\) là 1 nghiệm nguyên của hệ phương trình.
Với \(m=-1\) ta có \(y=-\dfrac{6}{4.\left(-1\right)+3}=6\)
Thay \(y=6\) vào (2) ta được:
\(4x-6=-2\)
\(\Leftrightarrow x=1\)
Thử lại \(x=1;y=6\) cho (2) ta thấy pt nghiệm đúng.
Vậy \(\left(x;y\right)=\left(1;6\right)\) là 1 nghiệm nguyên của hệ phương trình.
Vì \(\dfrac{3}{1}\ne\dfrac{-1}{2}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x-y=2m-1\\3x+6y=9m+6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-7y=2m-1-9m-6=-7m-7\\x+2y=3m+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=m+1\\x=3m+2-2m-2=m\end{matrix}\right.\)
\(y-\sqrt{x}=1\)
=>\(m+1-\sqrt{m}=1\)
=>\(m-\sqrt{m}=0\)
=>\(\sqrt{m}\left(\sqrt{m}-1\right)=0\)
=>\(\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\)
Lời giải:
Cộng 2 pt theo vế có:
$3x=3m+3\Rightarrow x=m+1$
$y=x-(2m+1)=m+1-(2m+1)=-m$
Khi đó:
$(x+1)(y-3)<0$
$\Leftrightarrow (m+1+1)(-m-3)<0$
$\Leftrightarrow (m+2)(m+3)>0$
$\Leftrightarrow m>-2$ hoặc $m<-3$
\(\left\{{}\begin{matrix}3x-y=2m-1\\x+2y=3m+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6x-2y+x+2y=4m-2+3m+2\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\x+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\m+2y=3m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\2y=2m+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=m+1\end{matrix}\right.\)
\(x^2+y^2+3\\ =m^2+\left(m+1\right)^2+3\\ =m^2+m^2+2m+1+3\\ =2m^2+2m+4\\ =2\left(m^2+m+2\right)\)
\(=2\left(m^2+m+\dfrac{1}{4}+\dfrac{7}{4}\right)\)
\(=2\left[\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]\)
\(=2\left(m+\dfrac{1}{2}\right)^2+\dfrac{7}{2}\ge\dfrac{7}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy ...