K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2021

Để pt có 2 nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}\Delta=m^2-4\left(m+3\right)>0\\m>0\\m+3>0\end{matrix}\right.\Leftrightarrow m>6\).

Sửa đề: \(x^2+\left(m+3\right)x+2m+2=0\)

a: Để phương trình có hai nghiệm trái dấu thì 2m+2<0

hay m<-1

b: \(\text{Δ}=\left(m+3\right)^2-4\left(2m+2\right)\)

\(=m^2+6m+9-8m-8\)

\(=m^2-2m+1=\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm với mọi m 

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m-1< >0\\2m+2>0\\m+3>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m< >1\end{matrix}\right.\)

Trường hợp 1: m=0

Phương trình sẽ là:

\(0x^2-2\cdot\left(0-1\right)x+0-3=0\)

=>2x-3=0

hay x=3/2

=>Phương trình có đúng một nghiệm dương, còn hai trường hợp còn lại thì ko đúng

Trường hợp 2: m<>0

a: 

Để phương trình có hai nghiệm trái dấu thì m(m-3)<0

hay 0<m<3

b:\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)

\(=4m^2-8m+4-4m^2+12m\)

=4m+4

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m>-1\\\dfrac{2\left(m-1\right)}{m}>0\\\dfrac{m-3}{m}>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1< m< 0\\m>3\end{matrix}\right.\)

19 tháng 11 2021

 Để phương trình  có 2 nghiệm dương phân biệt thì:

Hỏi đáp VietJack

23 tháng 7 2021

còn cái nịt

30 tháng 7 2021

\(mx^2+2\left(m-1\right)x+m+3=0\)(Đk:m≠0)

\(\Delta'=\left(m-1\right)^2-m\left(m+3\right)\)

\(\Delta'=m^2-2m+1-m^2-3m\)

\(\Delta'=1-5m\)

a,Để pt có nghiệm kép 

Thì\(\Delta'=0\)

\(\Leftrightarrow1-5m=0\Rightarrow m=\dfrac{1}{5}\)

b, Để pt có 2 nghiệm phân biệt

Thì\(\Delta'>0\)

\(\Leftrightarrow1-5m>0\Rightarrow m< \dfrac{1}{5}\)

c,Để pt có nghiệm 

Thì\(\Delta'\ge0\)

\(\Leftrightarrow1-5m\ge0\Rightarrow m\le\dfrac{1}{5}\)

d, Để pt vô nghiệm 

Thì\(\Delta'< 0\)

\(\Leftrightarrow1-5m< 0\Rightarrow m>\dfrac{1}{5}\)

 

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:
$m=0$ thì pt trở thành $-2x+3=0\Leftrightarrow x=\frac{3}{2}$

$m\neq 0$ thì pt là pt bậc 2 ẩn $x$

$\Delta'=(m-1)^2-m(m+3)=1-5m$

PT có nghiệm kép $\Leftrightarrow \Delta'=1-5m=0\Leftrightarrow m=\frac{1}{5}$

PT có 2 nghiệm pb $\Leftrightarrow \Delta'=1-5m>0$

$\Leftrightarrow m< \frac{1}{5}$

Vậy pt có 2 nghiệm pb khi $m< \frac{1}{5}$ và $m\neq 0$

PT có nghiệm khi \(\left[\begin{matrix} m=0\\ \Delta'=1-5m\geq 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m=0\\ m\leq \frac{1}{5}\end{matrix}\right.\Leftrightarrow m\leq \frac{1}{5}\)

PT vô nghiệm khi $\Delta'=1-5m< 0$

$\Leftrightarrow m> \frac{1}{5}$

12 tháng 4 2023

a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:

\(3^2-m.3+2m-4=0\)

\(\Leftrightarrow9-3m+2m-4=0\)

\(\Leftrightarrow m-5=0\)

\(\Leftrightarrow m=5\)

Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:

\(\Delta=\left(-5\right)^2-4.1.6=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)

Vậy nghiệm còn lại là \(x=2\)

25 tháng 8 2021

a, Để pt có 2 nghiệm pb khi \(\Delta>0\)

\(\Delta=\left(-2m\right)^2-4\left(m+6\right)=4m^2-4m-24>0\Leftrightarrow m< -2;m>3\)

b, Để pt trên là pt bậc 2 khi \(m\ne0\)

Để pt vô nghiệm khi \(\Delta< 0\)

\(\Delta=4m^2-4m\left(m+3\right)=4m^2-4m^2-12m< 0\Leftrightarrow-12m< 0\Leftrightarrow m>0\)

c, Để pt trên là pt bậc 2 khi \(m\ne2\)

Để pt trên có nghiệm kép \(\Delta=0\)

\(\Delta=\left(2m-3\right)^2-4\left(m+1\right)\left(m-2\right)=4m^2-12m+9-4\left(m^2-m-2\right)\)

\(=-8m+17=0\Leftrightarrow m=\frac{17}{8}\)