vẽ hình hộ luôn đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B H C D
Bài 1:
a) Xét \(\Delta ABC\left(\widehat{A}=90^o\right)\) có:
\(BC^2=AB^2+AC^2\) (định lí pitago)
\(\Rightarrow BC^2=8^2+6^2\)
\(\Rightarrow BC^2=64\)
\(\Rightarrow BC=8cm\)
Xét \(\Delta ABC\left(\widehat{A}=90^o\right)\) có:
\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\) (hệ thức lượng trong tam giác vuông)
\(\Rightarrow\dfrac{1}{AH^2}=\dfrac{1}{6^2}+\dfrac{1}{8^2}\)
\(\Rightarrow AH=4,8cm\)
Xét \(\Delta ABC\left(\widehat{A}=90^o\right)\) có:
\(AB^2=BH.BC\) (hệ thức lượng trong tam giác vuông)
\(\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{6^2}{10}=3,6cm\)
\(\Rightarrow CH=BC-BH=10cm-3,6cm=6,4cm\)
b) Xét \(\Delta ABH\left(\widehat{H}=90^o\right)\) và \(\Delta ADH\left(\widehat{H}=90^o\right)\) có:
\(BH=HD\) (giả thiết)
\(AH\) là cạnh chung
\(\Rightarrow\Delta ABH=\Delta ADH\left(cgv.cgv\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{ADH}\) (\(2\) cạnh tương ứng)
chưa vẽ được
tick cho mình cái
Bài tập 1
a) Chứng minh AFOE cân
Xét tam giác AOB và tam giác FOE, ta có:
- AB = FO (do B là đỉnh chéo của hình bình hành ABCD)
- AO = OF (do O là giao điểm của các đường chéo)
- AE = OF (do F nằm trên cạnh BC)
Do đó, hai tam giác AOB và FOE đồng dạng theo tỉ số 1:1.
Vậy, AFOE cân tại F.
b) Trên tia đối của tòa FB lấy điểm 1 sao cho F1 = FB. Chứng minh OF = h OE == DI
Xét tam giác F1OB và tam giác FOE, ta có:
- FB = F1B (do F1 = FB)
- FO = OF (do O là giao điểm của các đường chéo)
- BE = FE (do F nằm trên cạnh BC)
Do đó, hai tam giác F1OB và FOE đồng dạng theo tỉ số 1:1.
Vậy, OF = OE = DI.
c) Gia sư BAD =50. Tính EOF
Xét tam giác EOF, ta có:
- EO = OE (do O là giao điểm của các đường chéo)
- OF = OE = DI = 50/2 = 25
Do đó, EOF = 25^2 = 625.
Kết luận
- AFOE cân tại F
- OF = OE = DI = 25
- EOF = 625
Bài tập 2
Chứng minh 1 đổi xứng với K qua Đ
Xét tam giác AFE và tam giác BKF, ta có:
- AE = CF (do cho AE = CF)
- AF = BF (do do A và B là các đỉnh chéo của hình bình hành ABCD)
- EF = FB (do F nằm trên cạnh BC)
Do đó, hai tam giác AFE và BKF đồng dạng theo tỉ số 1:1.
Vậy, I đối xứng với K qua D.
Kết luận
I đối xứng với K qua D.
Bài tập 3
Chứng minh Nạp là hai điểm đối xứng nhau qua ở
Xét tam giác MNO và tam giác MNP, ta có:
- MN = MN (đồng nhất)
- NO = NP (do N và P lần lượt đối xứng với M qua a và b)
- MO = MP (do O là giao điểm của các đường chéo a và b)
Do đó, hai tam giác MNO và MNP đồng dạng theo tỉ số 1:1.
Vậy, N và P là hai điểm đối xứng nhau qua O.
Kết luận
N và P là hai điểm đối xứng nhau qua O.
Chúc bạn học tốt!
a: góc xOt=góc yOt=100/2=50 độ
b: góc xOt'=180 độ-góc xOt=130 độ
\(M\in SA\subset\left(SAB\right)\)
\(M\in\left(P\right)\)
Do đó: \(M\in\left(SAB\right)\cap\left(P\right)\)
Xét (SAB) và (P) có
\(M\in\left(SAB\right)\cap\left(P\right)\)
AB//CD
Do đó: \(\left(SAB\right)\cap\left(P\right)=xy\), xy đi qua M và xy//AB//CD
a: EG=căn 15^2-12^2=9cm
b: Xét ΔDEH vuông tại E và ΔDIH vuông tại I có
DH chung
góc EDH=góc IDH
=>ΔDEH=ΔDIH
=>HE=HI
c: Xét ΔHEP vuông tại E và ΔHIG vuông tại I có
HE=HI
góc EHP=góc IHG
=>ΔHEP=ΔHIG
=>HP=HG
d: HE=HI
HI<HG
=>HE<HG
e: DE+EP=DP
DI+IG=DG
mà DE=DI và EP=IG
nên DP=DG
mà HP=HG
nên DH là trung trực của PG
=>D,H,A thẳng hàng