Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Cho pt: 2x2 + mx + m - 3 = 0. Chứng minh rằng pt có 2 nghiệm phân biệt
Ta có: \(a=2;b=m;c=m-3.\)
\(\text{Δ}=b^2-4ac=m^2-4.2.\left(m-3\right)=m^2-8m+24-\left(m-4\right)^2+8\)
=> đpcm
+) Cho pt: x2 - 2(2m-1)x + 3m2 - 4 = 0. Chứng minh rằng pt luôn có nghiệm với mọi m; Tìm m để x12 + x22 - x1x2 = 5 (*)
Ta có: \(a=1;b'=-\left(2m-1\right);c=3m^2-4\)
\(\text{Δ′}=-\left(2m-1\right)^2-1.\left(3m^2-4\right)=4m^2-4m+1-3m^2+4=m^2-4m+5=\left(m-2\right)^2+1\)
=> Pt có nghiệm với mọi m
ta lại có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-1\left(1\right)\\x_1x_2=\frac{c}{a}=3m^2-4\left(2\right)\end{cases}}\)
(*)\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=5\)
thay (1) và (2) vào (*) ta có:
\(\left(2m-1\right)^2-3\left(3m^2-4\right)=5\)
\(\Leftrightarrow4m^2-4m+1-9m^2+12=5\)
\(\Leftrightarrow5m^2+4m-8=0\)
\(\Leftrightarrow\begin{cases}m=\frac{-2+2\sqrt{11}}{2}\\m=\frac{-2-2\sqrt{11}}{2}\end{cases}\)
Vậy \(m=\frac{-2+2\sqrt{11}}{2}\)hoặc \(m=\frac{-2-2\sqrt{11}}{2}\)thoả mãn x12 + x22 - x1x2 = 5
(Câu này mình nghĩ là tìm m để x12 + x22 + x1x2 = 5 thì đúng hơn, nếu đúng thì bạn bình luận để mình làm nhé!)
Học tốt nhé!
Ptr có: `\Delta'=b'^2-ac=[-(m-1)]^2-(m-3)`
`=m^2-2m+1-m+3`
`=m^2-3m+4`
`=m^2-2.m. 3/2+9/4+7/4`
`=(m-3/2)^2+7/4 > 0 AA m`
`=>\Delta' > 0 AA m`
Vậy ptr luôn có `2` `n_o` pb với mọi `m`
a: \(\text{Δ}=\left(2m-1\right)^2-4\left(m-1\right)\)
\(=4m^2-4m+1-4m+4=4m^2-8m+5\)
\(=\left(4m^2-8m+4\right)+5=4\left(m-1\right)^2+5>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm trái dấu thì m-1<0
hay m<1
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=\left(2m-3\right)^2-4\left(m-3\right)=9>0\)
Vậy PT có 2 nghiệm phân biệt với mọi m
Ta có \(\left[{}\begin{matrix}x_1=\dfrac{2m-3+3}{2}=m\\x_2=\dfrac{2m-3-3}{2}=m-3\end{matrix}\right.\)
Ta thấy \(m>m-3\) nên \(1< m-3< m< 6\Leftrightarrow4< m< 6\)
Vậy \(4< m< 6\) thỏa yêu cầu đề
Xét pt: \(x^2-\left(2m+1\right)x+2m-3\)
\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.\left(2m-3\right)\)
= \(4m^2+4m+1-8m+12=4m^2-4m+13=\left(2m-1\right)^2+12\) >0\(\forall m\)
=> pt luôn có 2 nghiệm phân biệt
a: \(\Delta=\left[-2\left(m-1\right)\right]^2-4\left(2m-5\right)\)
\(=4m^2-8m+4-8m+20\)
\(=4m^2-16m+24\)
\(=4m^2-16m+16+8=\left(2m-4\right)^2+8>0\)
Vậy: Phương trình luôn có hai nghiệm phân biệt
b: Để phương trình có hai nghiệm cùng dấu thì 2m-5>0
hay m>5/2
Xét \(\Delta'=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\)\(\ge0;\forall m\)
=>Pt luôn có hai nghiệm
Theo viet có: \(x_1+x_2=2\)
Do \(x_1^2\) là một nghiệm của pt \(\Rightarrow x_1^2-2x_1-m^2+2m=0\)\(\Leftrightarrow x_1^2=2x_1+m^2-2m\)
\(x_1^2+2x_2=3m\)
\(\Leftrightarrow2x_1+2x_2+m^2-2m=3m\)
\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)
\(\Leftrightarrow4+m^2-5m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4\\m=1\end{matrix}\right.\)
Vậy...
a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v
Ta có \(\Delta =(2m-3)^2-4(m^2-3m)=4m^2-12m+9-4m^2+12m=9>0\forall m\) .
Do đó pt luôn có 2 nghiệm phân biệt.