Bài 1: Rút gọn:
A = \(\dfrac{x}{x-2}+\dfrac{x^2+x-2}{4-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{x-y}+\dfrac{2y^2}{x^2-y^2}-\dfrac{x}{x+y}=\dfrac{x\left(x+y\right)+2y^2-x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{x^2+xy+2y^2-x^2+xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y^2+2xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{2y}{x-y}\)
b) \(B=\dfrac{x}{x-2}-\dfrac{4x}{x^2-4}-\dfrac{2}{x+2}=\dfrac{x\left(x+2\right)-4x-2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c) \(\dfrac{5}{x+1}-\dfrac{10}{-x^2+x-1}-\dfrac{15}{x^3+1}=\dfrac{5}{x+1}+\dfrac{10}{x^2-x+1}-\dfrac{15}{x^3+1}=\dfrac{5\left(x^2-x+1\right)+10\left(x+1\right)-15}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x^2-5x+5+10x+10-15}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x^2+5x}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5x}{x^2-x+1}\)
a: \(=x^2+2x-8-x^2-2x-1=-9\)
b: \(=\dfrac{x^2+6x+9+3x-9+2x^2-18x}{x\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{3x^2-9x}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
Với `x >= 0,x ne 1` có:
`A=[10\sqrt{x}]/[(\sqrt{x}-1)(\sqrt{x}+4)]-[2\sqrt{x}-3]/[\sqrt{x}+4]-[\sqrt{x}+1]/[\sqrt{x}-1]`
`A=[10\sqrt{x}-(2\sqrt{x}-3)(\sqrt{x}-1)-(\sqrt{x}+1)(\sqrt{x}+4)]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[10\sqrt{x}-2x+2\sqrt{x}+3\sqrt{x}-3-x-4\sqrt{x}-\sqrt{x}-4]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[-3x+10\sqrt{x}-7]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[(\sqrt{x}-1)(-3\sqrt{x}-7)]/[(\sqrt{x}-1)(\sqrt{x}+4)]`
`A=[-3\sqrt{x}-7]/[\sqrt{x}+4]`
\(A=\dfrac{x+3}{\left(x-3\right)^2}:\dfrac{12-x^2+x+x^2-9}{x\left(x-3\right)}\)
\(=\dfrac{x+3}{\left(x-3\right)^2}\cdot\dfrac{x\left(x-3\right)}{x+3}=\dfrac{x}{x-3}\)
a: \(A=\dfrac{x^2+2xy+y^2-x^2+xy+2y^2}{\left(x-y\right)\left(x+y\right)}\)
\(=\dfrac{3y^2+3xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{3y}{x-y}\)
\(A=\dfrac{3x}{x-2}\cdot\sqrt{x^2-4x+4}\)
\(=\dfrac{3x}{x-2}\cdot\left(x-2\right)\)
=3x
\(B=\dfrac{-5y}{x+3}\cdot\sqrt{x^2+6x+9}\)
\(=\dfrac{-5y}{x+3}\cdot\left|x+3\right|\)
\(=\pm5y\)
\(A=\dfrac{x}{x-2}-\dfrac{x^2+x-2}{x^2-4}=\dfrac{x^2+2x-x^2-x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{x+2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x-2}\)
\(A=\dfrac{x}{x-2}+\dfrac{x^2+x-2}{4-x^2}\left(x\ne\pm2\right).\)
\(A=\dfrac{x}{x-2}-\dfrac{\left(x-1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{x}{x-2}-\dfrac{x-1}{x-2}=\dfrac{x-x+1}{x-2}=\dfrac{1}{x-2.}\)