chứng tỏ rằng 0,3(19831983-19971997)thuộc số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`= 0,3 . (2003^2000 . 2003^3 - 1997^1996 .1997)`
`=0,3 . (...1 xx ...7 - ...1 xx ...7)`
`= 0,3 . (...7 - ...7)`
`= 0,3 xx ...0`
`= 0`
Nhẩm cũng ra : Kiến thức cơ bản
lẻ chia 2 dư 1
chẵn chia 2 hết
+Nếu n là số lẻ => n+3 là số chẵn 9+3=12
n+6 là số lẻ 9+6=15
Tích chẵn nhân lẻ = chẵn: chia hết cho 2
ví dụ 12x15=180
+Nếu n là số chẵn => n+3 là số lẻ 8+3=11
n+6 là số chẵn 8+6=14
Tích lẻ nhân chẵn = chẵn: chia hết cho 2
11x 14=154
Tông hợp lại=> luôn chia hết cho 2
Ngoài lề
Vì sao lẻ+lẻ= chẵn (2n+1) + (2k+1)= 2(n+k+1)
Lẻ+chẵn=lẻ (2n+1) + 2k = 2(n+k) +1
lẻ x chẵn=chẵn (2n+1).2k = 2(2kn+k)
Nhẩm cũng ra : Kiến thức cơ bản
lẻ chia 2 dư 1
chẵn chia 2 hết
+Nếu n là số lẻ => n+3 là số chẵn 9+3=12
n+6 là số lẻ 9+6=15
Tích chẵn nhân lẻ = chẵn: chia hết cho 2
ví dụ 12x15=180
+Nếu n là số chẵn => n+3 là số lẻ 8+3=11
n+6 là số chẵn 8+6=14
Tích lẻ nhân chẵn = chẵn: chia hết cho 2
11x 14=154
Tông hợp lại=> luôn chia hết cho 2
Ngoài lề
Vì sao lẻ+lẻ= chẵn (2n+1) + (2k+1)= 2(n+k+1)
Lẻ+chẵn=lẻ (2n+1) + 2k = 2(n+k) +1
lẻ x chẵn=chẵn (2n+1).2k = 2(2kn+k)
nếu n là số chẵn thì n+4 là số chẵn suy ra tích (n+4)x(n+5) là số chẵn thì tích đó chia hết cho 2
nếu n là số lẻ thì n+5 là số chẵn nên tích ( n+4)x(n+5) là số chẵn nên tích đó cũng chia hết cho 2
Gọi d là ƯCLN của tử và mẫu .
=>12n +1 chia hết cho d 60n+5 chia hết cho d
=>
30n +2chia hết cho d 60n +4 chia hết cho d
=> (60n+5) -(60n+4) chia hết cho d
=>1 chia hết cho d
=> d=1 => điều phải chứng minh (đpcm)
a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)
+Nếu a chia hết cho 5 , bài toán giải xong
+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5
+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5
+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5
+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có a+1=5e+4+1=(5e+5) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết cho 5
b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N
do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5
=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5
Gọi ƯCLN (2n+1;4n+3) = d ( d thuộc N sao )
=> 2n+1 và 4n+3 đều chia hết cho d
=> 2.(2n+1) và 4n+3 đều chia hết cho d
=> 4n+2 và 4n+3 đều chia hết cho d
=> 4n+3-(4n+2) chia hết cho d hay 1 chia hết cho d
=> d = 1 ( vì d thuộc N sao )
=> ƯCLN (2n+1;4n+3) = 1
=> 2n+1 và 4n+3 là 2 số nguyên tố cùng nhau (ĐPCM)
k mk nha
Gọi d là ƯCLN(2n+1, 4n+3), d \(\in\)N*
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+1\right)⋮d\\4n+3⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+2⋮d\\4n+3⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+3\right)-\left(4n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+1,4n+3\right)=1\)
\(\Rightarrow\)2n+1 và 4n+3 là hai số nguyên tố cùng nhau.