Biết m,n,p là độ dài 3 cạnh của 1\(\Delta\) ..CMR: m2+n2+p2<2.(mn+np+pm)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bđt Δ có: m < n + p; n < m + p; p < m + n
=> m2 < m(n+p) = mn + pm (1)
n2 < n(m+p) = mn + np (2)
p2 < p(m+n) = pm + np (3)
Cộng theo vế 3 bđt trên
=> m2 + n2 + p2 < mn + pm + mn + np + pm + np = 2(mn + np + pm)
=> đpcm
\(m^3+n^3+p^3-3mnp=\left(m^3+3m^2n+3mn^2+n^3\right)+p^3-3mnp-3m^2n-3mn^2=\left(m+n\right)^3+p^3-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left[\left(m+n\right)^2-\left(m+n\right)p-p^2\right]-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2-3mn\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)\)
Theo BĐT tam giác:
(*)m+n>p
<=>(m+n).p>p2
<=>mp+np>p2 (p>0) (1)
(*)m+p>n
<=>(m+p).n>n2
<=>mn+pn>n2 (n>0) (2)
(*)n+p>m
<=>(n+p).m>m2
<=>mn+pm>m2 (m>0) (3)
Cộng từng vế các BĐT (1);(2);(3)
=>mp+np+mn+pn+mn+pm>m2+n2+p2
=>(mp+mp)+(pn+pn)+(mn+mn)>m2+n2+p2
=>2mp+2pn+2mn>m2+n2+p2
=>2(mn+np+pm)>m2+n2+p2
=>2(m2+n2+p2)-2(mn+np+pm)<m2+n2+p2
=>m2+n2+p2<2(mn+np+pm) (đpcm)
\(m^3+n^3+p^3-3nmp\)
\(=\left(m+n\right)^3+p^3-3mn\left(m+n\right)-3mnp\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-pm-pn+p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-pm-pn-mn\right)\)
m<n+p(bđt \(\Delta\) )=> m2<m(n+p),chứng minh tương tự rồi cộng lại
Vì m;n;p là 3 cạnh của 1 tam giác nên ta có : \(\hept{\begin{cases}m+n>p\\m+p>n\\n+p>m\end{cases}}\) (bđt Tam Giác)
\(\Rightarrow\hept{\begin{cases}p\left(m+n\right)>p^2\\n\left(m+p\right)>n^2\\m\left(n+p\right)>m^2\end{cases}\Rightarrow\hept{\begin{cases}mp+np>p^2\\mn+np>n^2\\mn+mp>m^2\end{cases}}}\)
\(\Rightarrow2\left(mn+np+mp\right)>m^2+n^2+p^2\)
Hay \(m^2+n^2+p^2< 2\left(mn+np+mp\right)\) (ĐFCM)
\(A=\frac{\sqrt{x}+1}{\sqrt{x}-2}=\frac{\sqrt{x}-2+3}{\sqrt{x}-2}=1+\frac{3}{\sqrt{x}-2}\Rightarrow\)3 p chia hết cho \(\sqrt{x}-2\)để A là số nguyên dương
\(Ư_{\left(3\right)}\in\left\{1;-1;3;-3\right\}\Rightarrow\sqrt{x}-2\in\left\{1;3\right\}vìaplàsốnguyêndương\)
ta có : \(\sqrt{x}-2=1\Rightarrow\sqrt{x}=3\Rightarrow x=9\)
\(\sqrt{x}-2=3\Rightarrow\sqrt{x}=5\Rightarrow x=25\)
vậy để A là số nguyên dương thì x=9, x=25
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Xét hiệu: 2.(mn+np+pm)- (m^2+n^2+p^2)
= m.(m+p-n) +n.(m+p-n) + p.(m+n-p)
m,n,p là độ dài 3 cạnh của 1 tam giác
=> m,n,p >0 ; m+n-p>0 ; m+p-n>0 ; n+p-m >0
=> m.(m+p-n) +n.(m+p-n) + p.(m+n-p) >0
=>2.(mn+np+pm)- (m^2+n^2+p^2) >0
=> m2 + n2 + p2 < 2.(mn+np+pm)