giải phương trình \(\sqrt{3x+1}-\sqrt{2x+2}=\frac{x-1}{4}\)
giúp dùm nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)
Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)
Do đó \(x\in\left\{1;2\right\}\)
\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)
Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)
Vậy PT có nghiệm \(x=4\)
ĐKXĐ : \(x\ne0;x-\frac{1}{x}\ge0;1-\frac{1}{x}\ge0\)
phương trình tương đương với
\(\sqrt{\frac{x-1}{x}\left(x+1\right)}+5\sqrt{\frac{x-1}{x}}+\frac{2\left(x-1\right)}{x}-3\left(x+1\right)+3=0\)\(\left(1\right)\)
Đặt \(a=\sqrt{\frac{x-1}{x}}\)\(;\)\(b=\sqrt{x+1}\)\(\left(a,b\ge0\right)\)
Ta có \(\left(1\right)\)\(\Leftrightarrow ab+5a+2a^2-3b^2+3=0\)
\(\Leftrightarrow\left(a-b+1\right)\left(2a+3b+3\right)=0\)
\(\Leftrightarrow a-b+1=0\)(vì \(a,b\ge0\)nên \(2a+3b+3>0\))
\(\Leftrightarrow\sqrt{x+1}-\sqrt{\frac{x-1}{x}}=1\)\(\left(2\right)\)
Bình phương hai vế của \(\left(2\right)\)ta được
\(x+1-2\sqrt{\frac{x^2-1}{x}}+\frac{x-1}{x}=1\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)-2\sqrt{x-\frac{1}{x}}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-\frac{1}{x}}-1\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{x}=1\)
\(\Leftrightarrow x^2-x-1=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{5}}{2}\left(TMDK\right)\\x=\frac{1-\sqrt{5}}{2}\left(L\right)\end{cases}}\)
Vậy phương trình có nghiệm là : \(x=\frac{1+\sqrt{5}}{2}\)
P / s : Các bạn tham khảo nha
\(\sqrt{3x^2-5x+1}-\sqrt{x^2-2}=\sqrt{3\left(x^2-x-1\right)}-\sqrt{x^2-3x+4}\)
1) Tập xác định Mọi \(x\ge1\)
Vậy \(\sqrt{3x}-\sqrt{x+1}=\sqrt{2x+3}-\sqrt{2x-2}\)
Bình phương 2 vế rút gọn được \(x^2-x-6=0\)
\(\Rightarrow\)\(x=3\)
2) Điều kiện xác định là \(\hept{\begin{cases}x-\frac{1}{4}\ge0\\2-2x\ge0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{4}\le x\le1\)
Đặt \(\sqrt{x-\frac{1}{4}}=U\)\(\Rightarrow x=U^2+\frac{1}{4}\) Với điều kiện xác đinh trên thì \(U\ge0\) , thay vào phương trình gốc được
\(2\left(U^2+\frac{1}{4}\right)+\sqrt{U^2+\frac{1}{4}+U}-2=0\)
\(\Leftrightarrow2U^2+\sqrt{\left(U+\frac{1}{2}\right)^2}-\frac{3}{2}=0\)
\(\Leftrightarrow2U^2+\left(U+\frac{1}{2}\right)-\frac{3}{2}=0\)
Đến đây quá đơn giản vì đây là pt bậc 2 bình thường , kết hợp điều kiện xác định giải ta được
\(U=\frac{1}{2}\Leftrightarrow\sqrt{x-\frac{1}{4}}=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}\)
mk chưa đến lớp 9
quy đồng rồi binh phương hai lần