Tìm \(n\in Z\) để các biểu thức sau đạt GTNN:
a, \(A=\frac{10n+13}{2n+1}\)
b, \(B=\frac{6n-7}{3n+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{10n+13}{2n+1}=\frac{10n+12+1}{2n+1}=\frac{\left(10n+1\right)+12}{2n+1}=\frac{12}{2n+1}\)
=> 2n+1 \(\in\)Ư(12) = {\(\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\)}
Ta có bảng :
2n+1 | n |
-1 | -1 |
1 | 0 |
-2 | ko thoả mãn |
2 | ko thoả mãn |
3 | 1 |
-4 | ko thoả mãn |
4 | ko thoả mãn |
-6 | ko thoả mãn |
6 | ko thoả mãn |
-12 | ko thoả mãn |
12 | ko thoả mãn |
-3 | -2 |
tự đáp số
a, \(B=\frac{2\left(n+1\right)+5}{n+1}=2+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
b, \(C=\frac{3\left(n-2\right)+5}{n-2}=3+\frac{5}{n-2}\in Z\)
<=> \(n-2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{3;1;7;-3\right\}\)
c, \(D=\frac{-3\left(n+1\right)+5}{n+1}=-3+\frac{5}{n+1}\in Z\)
<=> \(n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
Giải ra ta được : \(n=\left\{0;-2;4;-6\right\}\)
Để : \(A=\frac{6n-5}{n-1}\in Z\)
Thì 6n - 5 chia hết cho n - 1
<=> 6n - 6 + 1 chia hết cho n - 1
=> 6(n - 1) + 1 chia hết cho n - 1
=> 1 chia hết cho n - 1
=> n - 1 thuộc Ư(1) = {-1;1}
Vậy n = {0;2} .
Để : \(B=\frac{3n+1}{2n-3}\in Z\)
Thì 3n + 1 chia hết cho 2n - 3
=> 6n + 2 chia hết cho 2n - 3
=> 6n - 9 + 11 chia hết cho 2n - 3
=> 3(2n - 3) + 11 chia hết cho 2n - 3
=> 11 chia hết cho 2n - 3
=> 2n - 3 thuộc Ư(11) = {-11;-1;1;11}
=> 2n = {-8;2;4;14}
=> n = {-4;1;2;7}
Vậy n = {-4;1;2;7} .
Để \(\frac{6n+8}{2n-1}\)tối giản thì \(\frac{11}{2n-1}\)tối giản \(\Leftrightarrow\)ƯC(11,2n-1)=1,-1
\(\Rightarrow\)2n-1 không chia hết 5\(\Rightarrow\)2n-1\(\ne\)11k(k\(\in\)Z, k\(\ne\)0)
\(\Rightarrow\)n\(\ne\)11k+1:2
\(a)\) Ta có :
\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)
Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)
Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Do đó :
\(3n+1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(4\) | \(-4\) |
\(n\) | \(0\) | \(\frac{-2}{3}\) | \(\frac{1}{3}\) | \(-1\) | \(1\) | \(\frac{-5}{3}\) |
Lại có \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)
Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời