K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2016

có chia ở đầu à

27 tháng 5 2018

Ta có: 2015/501=4+11/501 =>a=4

        501/11=45+6/11  =>b=45

         11/6=3+2/3  =>c=3

       3/2=1+1/2    =>d=1

       2/1=2  =>e=2

Vậy a=4 :b=45 :c=3 :d=1: e=2

Chúc bạn học tốt . Để dễ hiểu bạn hãy tham hảo đề toán giải máytính cầm tay

15 tháng 2 2019

Áp dụng bất đẳng thức Cauchy- Schwartz ta có: 

      \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\ge\frac{\left(1+1+1+1+1\right)^2}{a+b+c+d+e}=\frac{25}{a+b+c+d+e}\)

Dấu "=" xảy ra khi a = b = c = d = e

20 tháng 8 2019

\(a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=\frac{2013}{1990}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{23}{1990}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{\frac{1990}{23}}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{12}{23}}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{\frac{23}{12}}}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{11}{12}}}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{\frac{12}{11}}}}\)

\(\Leftrightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e}}}}=1+\frac{1}{86+\frac{1}{1+\frac{1}{1+\frac{1}{11}}}}\)

Vậy a = 1; b = 86; c = 1; d = 1; e = 11

Vậy a + b + c + d + e = 1 + 86 + 1 + 1 + 11 = 100

22 tháng 5 2015

\(\frac{654}{12254}=\frac{12254-11600}{12254}=1+\frac{-11600}{12254}=1+\frac{1}{\frac{12254}{-11600}}=1+\frac{1}{1+\frac{23854}{-11600}}=1+\frac{1}{1+\frac{1}{-\frac{11600}{23854}}}=\)sức gõ công thức có hạn, cứ theo đó mà làm tiếp, đảm bảo sẽ ra ngay kết quả

đúng nha bạn

8 tháng 9 2018

Đặt;\(\frac{a}{d}=x;\frac{b}{e}=y;\frac{c}{f}=z\left(x,y,z>0\right)\)\(\Rightarrow\)Ta cần tính \(x^2+y^2+z^2\)

Suy ra ta có hệ phương trình;\(\hept{\begin{cases}x+y+z=1\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\end{cases}}\)

Từ (2) suy ra xy+yz+xz=0

Lại có \(1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

Suy ra \(x^2+y^2+z^2=1\)

9 tháng 3 2019

Ta có : \(\frac{20082009}{242}=82983+\frac{123}{242}\)

                                   \(=82983+\frac{1}{\frac{242}{123}}\)

                                  \(=82983+\frac{1}{1+\frac{119}{123}}\)

                                  \(=82983+\frac{1}{1+\frac{1}{\frac{123}{119}}}\)

                                   \(=82983+\frac{1}{1+\frac{1}{1+\frac{4}{119}}}\)

                                  \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{\frac{119}{4}}}}\)

                                 \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{3}{4}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{\frac{4}{3}}}}}\)

                               \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{3}}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{\frac{3}{1}}}}}}\)

                                \(=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)

\(\Rightarrow a+\frac{1}{b+\frac{1}{c+\frac{1}{d+\frac{1}{e+\frac{1}{f+\frac{1}{g}}}}}}=82983+\frac{1}{1+\frac{1}{1+\frac{1}{29+\frac{1}{1+\frac{1}{2+\frac{1}{1}}}}}}\)

Cân bằng hệ số ta thu được \(a=82983\)

                                            \(b=1\)

                                            \(c=1\)

                                           \(d=29\)

                                           \(e=1\)

                                          \(f=2\)

                                         \(g=1\)

P/S: e lớp 6 , có gì sai thông cảm ạ =))

9 tháng 3 2019

Incursion giỏi dữ vậy ta