K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chọn A

10 tháng 1 2022

Vì 0 độ<α<β<90 độ nên:

0<sinα<sinβ, cosα>cosβ>0

0<tanα<tanβ, cotα>cotβ>0

=>cosα<cosβ => cosα-cosβ<0 => chọn C.

 

7 tháng 9 2023

\(sin\alpha=cos\beta=\dfrac{AB}{BC}\)

\(tan\alpha=cot\beta=\dfrac{AB}{AC}\)

8 tháng 9 2023

\(\alpha+\beta=90^o\)

\(\Rightarrow\beta=90^o-\alpha\)

Theo đề bài :

\(sin\alpha=cos\beta\)

\(\Rightarrow sin\alpha=cos\left(90^o-\alpha\right)\)

mà \(\alpha;90^o-\alpha\) là 2 góc phụ nhau

\(\Rightarrow cos\left(90^o-\alpha\right)=sin\alpha\left(dpcm\right)\)

Tương tự \(tan\alpha=cot\beta=cot\left(90^o-\alpha\right)\)

28 tháng 8 2017

Giải bài 4 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 4 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 4 trang 114 sgk Hình học 11 | Để học tốt Toán 11

Vậy (MHK) chính là mặt phẳng đi qua M và vuông góc với (α) và (β).

Kết quả: Mặt phẳng (P) cần dựng (tức mp(MHK)) là mặt phẳng đi qua M và vuông góc với Δ.

Vì qua một điểm chỉ có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước nên (P) là duy nhất.

Nếu (α) // (β) thì qua M ta chỉ có thể vẽ một đường thẳng Δ vuông góc với (α) và (β). Bất kì mặt phẳng (P) nào chứa Δ cũng đều vuông góc với (α), (β). Trường hợp này, qua M có vô số mặt phẳng vuông góc với (α), (β).

21 tháng 3 2019

* Ta có  sin 2 α + cos 2 α = 1 ⇒ sin 2 α + 16 25 = 1 ⇒ sin 2 α = 9 25

Mà  sin α < 0 ⇒ sin α = - 3 5

* Vì  sin 2 β + cos 2 β = 1 ⇒ 9 16 + cos 2 β = 1 ⇒ c o s 2 β = 7 16

  cos β > 0 ⇒ cos β = 7 4

*  sin α + β = sin α . cos β + c o s α . sin β = - 3 5 . 7 4 + 4 5 . 3 4 = 12 - 3 7 20

13 tháng 8 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi r là bán kính mặt cầu

ta có Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

1 tháng 4 2018


9 tháng 10 2019

Chọn D

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có α + β = π nên sinα = sin(π – α) = sinβ, suy ra sin2α = sin2β.

a) A = sin2α + cos2β = sin2β + cos2β = 1.

b) Ta có α + β = π nên cosα = – cos(π – α) = – cosβ.

Khi đó, B = (sinα + cosβ)2 + (cosα + sinβ)2

= (sinβ + cosβ)2 + (– cosβ + sinβ)2

= (sinβ + cosβ)2 + (sinβ – cosβ )2

= sin2β + 2sinβ cosβ + cos2β + sin2β – 2sinβ cosβ + cos2β

= 2(sin2β + cos2β)

= 2 . 1 = 2.