Cho biểu thức : A= X x 50 -19,2
a)Tính giá trị của A với X= 0,5
b)Tính X khi A= 80,8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) A = 0,5 * 50 - 19,2
= 25 - 19,2
= 5,8
b) x * 50 - 19,2 = 80,8
x * 50 = 80,8 + 19,2
x * 50 = 100
x = 100 : 50
x = 2
bài này dễ mà em =.=
a, A=0.5*50-19.2=5.8
b, 80.8=x*50-19.2
=> x= 2
a) A = 0,5 x 50 - 19,2
A = 25 - 19,2
A = 5,8
b) C x 50 - 19,2 = 80,8
C x 50 = 100
C = 2
cho biểu thức: A= \(\sqrt{x}+\dfrac{1}{\sqrt{x}}\)với x≥4.Giá trị nhỏ nhất của A là:
A 0,5
B 2
C 4
D 2,5
\(A\ge2\sqrt{\sqrt{x}\cdot\dfrac{1}{\sqrt{x}}}=2\left(B\right)\)
a) A = 13,8 : (5,6 - 4,91) = 13,8 - 0,69
A = 13,11
b) 4 = 13.8 : (5,6 - x)
5,6 - x = 13,8 : 4
5,6 - x = 3,45
x = 5,6 -3,45
x = 2,15
a) A = 13,8 : ( 5,6 - 4,91 )
A = 13,8 : 0,69
A = 20
b) 4 = 13,8 : ( 5,6 - x )
5,6 - x = 13,8 : 4
5,6 - x = 3,45
x = 5,6 - 3,45
x = 2,15
Bài 5:
a: Thay \(x=4+2\sqrt{3}\) vào E, ta được:
\(E=\dfrac{\sqrt{3}+1-1}{\sqrt{3}+1-3}=\dfrac{\sqrt{3}}{\sqrt{3}-2}=-3-2\sqrt{3}\)
b: Để E<1 thì E-1<0
\(\Leftrightarrow\dfrac{\sqrt{x}-1-\sqrt{x}+3}{\sqrt{x}-3}< 0\)
\(\Leftrightarrow\sqrt{x}-3< 0\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
c: Để E nguyên thì \(4⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-2;1;2;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{4;5;7\right\}\)
hay \(x\in\left\{16;25;49\right\}\)
Câu 2:
a) Ta có \(x=4-2\sqrt{3}\Rightarrow\sqrt{x}=\sqrt{\left(\sqrt{3}-2\right)^2}=\sqrt{3}-2\)
Thay \(x=\sqrt{3}-1\) vào \(B\), ta được
\(B=\dfrac{\sqrt{3}-1-2}{\sqrt{3}-1+1}=\dfrac{\sqrt{3}-3}{\sqrt{3}}=1-\sqrt{3}\)
b) Để \(B\) âm thì \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< 0\) mà \(\sqrt{x}+1\ge1>0\forall x\) \(\Rightarrow\sqrt{x}-2< 0\Rightarrow\sqrt{x}< 2\Rightarrow x< 4\)
c) Ta có \(B=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}=1-\dfrac{3}{\sqrt{x}+1}\)
Với mọi \(x\ge0\) thì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\Rightarrow\dfrac{3}{\sqrt{x}+1}\le3\Rightarrow B=1-\dfrac{3}{\sqrt{x}+1}\ge-2\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=1\Leftrightarrow x=0\)
Vậy \(B_{min}=-2\) khi \(x=0\)
a: \(A=\sqrt{x}+\dfrac{\sqrt{x}\left(1+2\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\sqrt{x}+\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)
Khi x=4 thì \(A=2+\dfrac{2\cdot2+1}{2+1}=2+\dfrac{5}{3}=\dfrac{11}{3}\)
b: Khi x=(2-căn 3)^2 thì \(A=2-\sqrt{3}+\dfrac{2\left(2-\sqrt{3}\right)+1}{2-\sqrt{3}+1}\)
\(=2-\sqrt{3}+\dfrac{4-2\sqrt{3}+1}{3-\sqrt{3}}\)
\(=2-\sqrt{3}+\dfrac{5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{\left(2-\sqrt{3}\right)\left(3-\sqrt{3}\right)+5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{6-2\sqrt{3}-3\sqrt{3}+3+5-2\sqrt{3}}{3-\sqrt{3}}\)
\(=\dfrac{14-7\sqrt{3}}{3-\sqrt{3}}\)
d: A=2
=>\(\dfrac{x+\sqrt{x}+2\sqrt{x}+1}{\sqrt{x}+1}=2\)
=>\(x+3\sqrt{x}+1=2\left(\sqrt{x}+1\right)=2\sqrt{x}+2\)
=>\(x+\sqrt{x}-1=0\)
=>\(\left[{}\begin{matrix}\sqrt{x}=\dfrac{-1+\sqrt{5}}{2}\left(nhận\right)\\\sqrt{x}=\dfrac{-1-\sqrt{5}}{2}\left(loại\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{6-2\sqrt{5}}{4}=\dfrac{3-\sqrt{5}}{2}\)
a) Với x = 0,5 ta có:
A = 0,5 x 50 - 19,2
= 25 - 19,2
= 5,8
b) Ta có: A = X x 50 - 19,2 = 80,8
\(\Rightarrow\) X x 50 = 100
\(\Rightarrow\) X = 2
Chúc bạn học tốt