a) Y x 26 = 884 b) 425 x Y = 17
Gúp mình với
Hellp Me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em thử, sai thì thôi
a) Đặt c - b =x; a - c = y suy ra b - a = -(x+y)
Ta có \(a^3x+b^3y-c^3\left(x+y\right)\)
\(=x\left(a-c\right)\left(a^2+ac+c^2\right)+y\left(b-c\right)\left(b^2+bc+c^2\right)\)
\(=\left(c-b\right)\left(a-c\right)\left(a^2+ac+c^2\right)-\left(a-c\right)\left(c-b\right)\left(b^2+bc+c^2\right)\)
\(=\left(a-c\right)\left(c-b\right)\left(a^2+ac-b^2-bc\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(c-b\right)\left(a+b+c\right)\)
b) tương tự cũng phải đặt:v
x - y = a; y - z = b thì: z - x = -(a+b)
\(xya+yzb-zx\left(a+b\right)=xya-xza+yzb-xzb\)
\(=xa\left(y-z\right)+zb\left(y-x\right)\)
\(=x\left(x-y\right)\left(y-z\right)-z\left(y-z\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
1,
a,1100+(-100)=1000
b,(2017)+2010=-7
c,/-102/+36=138
d,/-1002/+(-102)=900
e,(-1002)+(-102)+515=589
a)\(6x=4y=3z\Rightarrow\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{3}}\)
Áp dụng tc dãy tỉ:
\(\frac{x}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{3}}=\frac{x+y+z}{\frac{1}{6}+\frac{1}{4}+\frac{1}{3}}=\frac{18}{\frac{3}{4}}=24\)
\(\Rightarrow\begin{cases}\frac{x}{\frac{1}{6}}=24\\\frac{y}{\frac{1}{4}}=24\\\frac{z}{\frac{1}{3}}=24\end{cases}\)\(\Rightarrow\begin{cases}x=144\\y=96\\z=72\end{cases}\)
a) Theo đề bài, ta có:
6x=4y=3z và x+y+z=18
\(\Rightarrow6x=4y=\frac{x}{4}=\frac{y}{6}\)
\(\Rightarrow4y=3z=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow6x=4y=3z=\frac{x}{4}=\frac{y}{6};\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow\frac{x}{12}=\frac{y}{18};\frac{y}{18}=\frac{z}{24}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{12}=\frac{y}{18}=\frac{z}{24}=\frac{x+y+z}{12+18+24}=\frac{18}{54}=\frac{1}{3}\)
Vậy x=4, y=6, z=8.
b) Theo đề bài, ta có:
6x=10y=15z và x+y+z=90
\(\Rightarrow6x=10y=\frac{x}{10}=\frac{y}{6}\)
\(\Rightarrow10y=15z=\frac{y}{15}=\frac{z}{10}\)
\(\Leftrightarrow6x=10y=15z=\frac{x}{10}=\frac{y}{6};\frac{y}{15}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{150}=\frac{y}{90};\frac{y}{90}=\frac{z}{60}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{150}=\frac{y}{90}=\frac{z}{60}=\frac{x+y+z}{150+90+60}=\frac{90}{300}=\frac{3}{10}\)
Vậy x=45, y=27, z=18
^...^ ^_^
a) x2 + 45 = y
Do x2 + 45 > 2 => y nguyên tố > 2 => y lẻ
=> x2 chẵn => x chẵn
Mà 2 là số nguyên tố chẵn duy nhất => x = 2
=> y = 22 + 45 = 49, ko là số nguyên tố, hình như là y2 mới đúng bn ạ
b) 2x = y + y + 1
=> 2x = 2y + 1
Do 2y + 1 là số lẻ => 2x lẻ => x = 0, không là số nguyên tố
Cả 2 câu sao đều vô lí z bn
(x-1)(2y-1)= 11
=> x-1 thuộc B(11) ={ 1; 11;-1;-11}
=> x thuộc{ 2; 12; 0; -10}
Sau đó thay vào tìm y nha. Tui đi tơiiii đâyy
\(a,A=5x^2a-10xya+5y^2a\)
\(=5a\left(x^2-2xy+y^2\right)\)
\(=5a\left(x-y\right)^2\)
Thay x = 124; y=24;a=2 ta có
\(5.2\left(124-24\right)^2=10.100^2=100000\)
\(b,B=2x^2+2y^2-x^2z+z-y^2z-2\)
\(=2\left(x^2+y^2-1\right)-z\left(x^2+y^2-1\right)\)
\(=\left(x^2+y^2-1\right)\left(2-z\right)\)
Thay x = 1 ; y = 1; z= -1 ta có
\(\left(1^2+1^2-1\right)\left(2-\left(-1\right)\right)=\left(1+1-1\right)\left(2+1\right)=1.3=3\)
\(c,C=x^2-y^2+2y-1\)
\(=x^2-\left(y^2-2y+1\right)=x^2-\left(y-1\right)^2=\left(x-y+1\right)\left(x+y-1\right)\)
Thay x = 75; y = 26 ta có
\(\left(75-26+1\right)\left(75+26-1\right)=50.100=5000\)