K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2020

Ta có x + y = 2 ⇒ y = 2 - x ≥ 0 ⇒ 0 ≤ x ≤ 2 . Thay y = 2 - x và biểu thức P ta được

P = 1 3 x 3 + x 2 + 2 - x 2 - x + 1 = 1 3 x 3 + 2 x 2 - 5 x + 5 = f x

với  x ∈ 0 ; 2

Đạo hàm  f ' x = x 2 + 4 x - 5 = 0 ⇔ x = 1 x = - 5

Do x ∈ 0 ; 2  nên loại x = -5

f 1 = 7 3 ; f 0 = 5 ; f 2 = 17 3  

Vậy m i n x ∈ 0 ; 2 P = m i n x ∈ 0 ; 2 f x = 7 3  khi và chỉ khi x = 1

Đáp án B

15 tháng 4 2021

\(A=x^2+y^2\) hả bạn?

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$

$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

29 tháng 4 2018

Chọn C.

Phương pháp: 

Đưa biểu thức P về hàm số 1 ẩn x.

Khảo sát, tìm GTNN của hàm số đó.

Cách giải:

12 tháng 10 2019

18 tháng 1 2018

19 tháng 12 2020

Ta có \(xy\le\dfrac{\left(x+y\right)^2}{4}\).

Do đó ta có: \(x+y+xy=x+y-2xy+3xy\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Rightarrow x^2+y^2\le x+y-2xy+\dfrac{3}{4}\left(x+y\right)^2\)

\(\Leftrightarrow\dfrac{1}{4}\left(x+y\right)^2-\left(x+y\right)\le0\)

\(\Leftrightarrow\left(x+y\right)\left[\dfrac{1}{4}\left(x+y\right)-1\right]\le0\)

\(\Leftrightarrow0\le x+y\le4\).

Do đó m = 0, n = 4.

Vậy m2 + n2 = 16. Chọn A.

24 tháng 12 2020

Dạ, em cảm ơn