Tìm a để đa thức: x3-3x2+5x+a chia cho đa thức x-2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2x^4-2x^3+2x^2+3x^3-3x^2+3x-2x^2+2x+2+a-2⋮x^2-x+1\)
=>a=2
\(\Leftrightarrow x^3+3x^2+5x+a=\left(x+3\right)\cdot a\left(x\right)\)
Thay \(x=-3\Leftrightarrow-27+27-15+a=0\Leftrightarrow a=15\)
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
\(\Leftrightarrow x^3-4x^2+x^2-2x+7x-14+15⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
hay \(x\in\left\{3;1;5;-1;7;-3;17;-13\right\}\)
để tìm số dư, rồi cho số dư đó bằng 0, từ đó tìm được giá trị của m.
Mở rộng: Bài toán này ta áp dụng phân tích đa thức thành nhân tử để giải toán
a: \(\dfrac{A}{B}=\dfrac{x^3+x^2+2x^2+2x+x+1-3}{x+1}=x^2+2x+1-\dfrac{3}{x+1}\)
b: Để A chia hết cho B thì \(x+1\in\left\{1;-1;3;-3\right\}\)
=>\(x\in\left\{0;-2;2;-4\right\}\)
\(\left(x^3-3x^2+5x-a\right):\left(x-2\right)=x^2+x+7\)dư \(-a+14\)
Để\(\left(x^3-3^2+5x-a\right)⋮\left(x-2\right)\Rightarrow\)-a+14=0
-a=0-14
-a=-14=>a=14
Vậy a=14