K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2016

x2+x+3x+3<0

<=> x(x+1) + 3(x+1)<0

<=> (x+3)(x+1)<0

Vì tích 2 số trái dấu nhân với nhau ra kết quả âm nên x+3 và x+1 trái dấu

Trường hợp 1: x+3>0 thì x+1<0

<=> x>-3 và x<-1

<=> -3<x<-1

Trường hợp 2: x+3<0 thì x+1>0

<=> x<-3 và x>-1 (Vô lý)

Vậy -3<x<-1

8 tháng 4 2016

Ta có x2+4x+3<0 (1)

<=>(x2+4x+4)-1<0

<=>(x-2)^2-1<0 mà (x-2)^2=<0

   Vậy BPT(1) đúng

  

8 tháng 4 2016

ĐỂ (x+1)(x+3)< 0 khi x+1>0, x+3< 0 hoặc x+1<0,x+3> 0

x>-1,x>-3 => x>-1

hoặc x<-1,x<-3 => x<-3

vậy với x>-1 hoặc x<-3 thi (x+1)(x+3) <0

8 tháng 4 2016

Vì tích trên < 0 => x+1 và x+3 trái dấu.mà x+3-(x+1)=2=>x+3>x+1=>x+3 mang dấu + và x+1 ngược lại=>x+3>0 và x+1 cũng ngược lại

=>nếu x+3>0=>x>3(1)

x+1<0=>x<1(2)

Từu 1 và 2 => 3<x<1

Ủa, vô lí, hì vậy x ko có gt nhé

Nhưng đây là toán nâng cao lớp 6 đó bn ơi

16 tháng 7 2021

| 2-4x | = 4x-2

<=> \(\orbr{\begin{cases}\left|2-4x\right|=-2+4x=4x-2\\\left|2-4x\right|=2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x=4x-2\\2-4x=4x-2\end{cases}}\)

<=>\(\orbr{\begin{cases}-2+4x-4x+2=0\\2-4x-4x+2=0\end{cases}}\)

<=>\(\orbr{\begin{cases}0=0\\-8x+4=0\end{cases}}\)

<=> x=\(\frac{-4}{-8}=\frac{1}{2}\)

=> \(S=\left\{\frac{1}{2};\infty\right\}\)

2x-7> 3(x-1)

<=>2x-7>3x-3

<=>2x-3x>-3+7

<=>-x>4

<=>x<4

=>S={x/x<4}

1-2x<4(3x-2)

<=>1-2x<12x-8

<=>-2x-12x<-8-1

<=>-14x<-9

<=>x>\(\frac{9}{14}\)

=>S={\(\frac{9}{14}\)}

-3x+2|-4 -x|> 0

<=>\(\orbr{\begin{cases}-3x+2+4+x>0\\-3x+2-4x-x>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x+6>0\\-8x+2>0\end{cases}}\)

<=>\(\orbr{\begin{cases}-2x>-6\\-8x>-2\end{cases}}\)

<=>\(\orbr{\begin{cases}x< 3\\x< \frac{1}{4}\end{cases}}\)

=>S={x/x<3;x/x<\(\frac{1}{4}\)}

4x-1|x-2|< 0

<=>\(\orbr{\begin{cases}4x-1-x+2< 0\\4x-1+x-2< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x+1< 0\\3x-3< 0\end{cases}}\)

<=>\(\orbr{\begin{cases}3x< -1\\3x< 3\end{cases}}\)

<=>\(\orbr{\begin{cases}x< \frac{-1}{3}\\x< 1\end{cases}}\)

=>S={x/x<\(\frac{-1}{3}\);x/x<1}

=>x^2+4x+4-x^2-10x-25<=-8x-10

=>-6x-21<=-8x-10

=>2x<=11

=>x<=11/2

7 tháng 7 2018

a) \(x^2-4x+3>0\)

\(\Leftrightarrow x^2-x-3x+3>0\)

\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)>0\)

\(\Leftrightarrow\left(x-3\right)\left(x-1\right)>0\)

Lập bảng xét dấu :

x x-3 x-1 (x-3)(x-1) 1 3 - 0 - + 0 - + + + - +

Dựa vào bảng xét dấu ta có : \(x< 1\) hoặc \(x>3\)

b) \(x^2-2x+3x-6< 0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)< 0\)

\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)< 0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)< 0\)

Lập bảng xét dấu :

x x+3 x-2 (x+3)(x-2) -3 2 0 0 - - + - + + + - +

Dựa vào bảng xét dấu ta có : \(-3< x< 2\)

7 tháng 7 2018

phần b bn sai đề zui

NV
15 tháng 4 2020

Để BPT vô nghiệm

a/ \(\left\{{}\begin{matrix}2m+3< 0\\\Delta'=\left(m-1\right)^2-4\left(2m+3\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -\frac{3}{2}\\m^2-10m-11< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -\frac{3}{2}\\-1< m< 11\end{matrix}\right.\) \(\Rightarrow\) Không tồn tại m thỏa mãn

b/ \(\left\{{}\begin{matrix}m>0\\\Delta'=4-8m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\m\ge\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow m\ge\frac{1}{2}\)

19 tháng 6 2017

Đặt A = \(x^2-4x+1< 0\)

Để \(A< 0\Leftrightarrow2-\sqrt{3}< x< 2+\sqrt{3}\)

19 tháng 6 2017

\(x^2-4x+1< 0\)

\(\Leftrightarrow x-2x-2x+1< 0\)

\(\Leftrightarrow x^2-2x+1< 2x\)

\(\Leftrightarrow\left(x-1\right)^2< \left(\sqrt{2x}\right)^2\)

\(\sqrt{2x}>-\sqrt{2x}\)

\(\Leftrightarrow x-1< \sqrt{2x}=>x< 2+\sqrt{3}\)

\(x-1>-\sqrt{2x}=>x>2-\sqrt{3}\)

Vậy nghiệm của bất phương trình là \(2-\sqrt{3}< x< 2+\sqrt{3}\)

5 tháng 8 2015

khó thế, bó tay .com.vn

15 tháng 5 2019

        \(4x^2+11x\le3\)

\(\Leftrightarrow4x^2+11x-3\le0\)

\(\Leftrightarrow4x^2+12x-x-3\le0\)

\(\Leftrightarrow\left(4x^2+12x\right)-\left(x+3\right)\le0\)

\(\Leftrightarrow4x\left(x+3\right)-\left(x+3\right)\le0\)

\(\Leftrightarrow\left(x+3\right)\left(4x-1\right)\le0\)

Phần sau tự làm nha ^_^