Cmr : 5^2005 + 5^2003 chia hết cho 13.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{2005}+5^{2003}\)
\(=5^{2003}.\left(5^2+1\right)\)
\(=5^{2003}.26\)
\(=5^{2003}.2.13\)\(⋮\)\(13\)
5^2005 + 5^2003 = 5^2003 (5^2 +1)
= 5^2003 .26 chia hết cho 13
Bài 1:
a,\(5^{2005}+5^{2003}=5^{2003}(25+1)=26.5^{2003}\vdots13(đpcm)\)
b,\(a^2+b^2+1\ge ab+a+b\)
<=>\(2a^2+2b^2+2\ge2ab+2a+2b\)
<=>\((a^2-2ab+b^2)+(a^2-2a+1)+(b^2-2b+1)\ge0\)
<=>\((a-b)^2+(a-1)^2+(b-1)^2\ge0(tm)\)
=> đpcm
a) 52005 + 52003 = 52003 ( 52 + 1 ) = 52003 . 26 = 52003 . 2 .13
=> 52005 + 52003 chia hết cho 13
b) a2 + b2 +1 \(\ge\) ab + a + b
\(\Leftrightarrow\) 2a2 + 2b2 + 2 ≥ 2ab + 2a + 2b
\(\Leftrightarrow\)(a2 − 2ab + b2) + (a2 − 2a + 1) + (b2 − 2b + 1) ≥ 0
\(\Leftrightarrow\) (a − b)2 + (a − 1)2 + (b − 1)2 ≥ 0
52005+52003
=52003.(52+1)
=52003.26
=52003.13.2
Vì 13 chia hết cho 13 nên 52003 . 13 . 2 chia hết 13
Vậy: 52005+52003
a) Ta có:
\(5^2=25\equiv-1\left(mod13\right)\)
\(\Rightarrow\left\{{}\begin{matrix}5^{2004}=\left(5^2\right)^{1002}\equiv\left(-1\right)^{1002}\left(mod13\right)\equiv1\left(mod13\right)\\5^{2002}=\left(5^2\right)^{1001}\equiv\left(-1\right)^{1001}\left(mod13\right)\equiv-1\left(mod13\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}5^{2005}=5^{2004}.5\equiv1.5\left(mod13\right)\equiv5\left(mod13\right)\\5^{2003}=5^{2002}.5\equiv\left(-1\right).5\left(mod13\right)\equiv-5\left(mod13\right)\end{matrix}\right.\)
\(\Rightarrow5^{2005}+5^{2003}\equiv5+\left(-5\right)\left(mod13\right)\equiv0\left(mod13\right)\)
Vậy...
a) 5+52+53+54+...+5100
= (5+52)+(53+54)+...+(599+5100)
= 30+52.(5+52)+...+598.(5+52)
= 30+52.30+...+598.30
= 30.(1+52+...+598)
Vì 30 chia hết cho 10
=> 30.(1+52+...+598) chia hết cho 10
=> 5+52+53+...+5100 chia hết cho 10
Ta có: \(5^{2005}+5^{2003}=5^{2003}\left(5^2+1\right)=5^{2003}.26=5^{2003}.2.13\) chia hết cho \(13\)
Vậy, \(5^{2005}+5^{2003}\) chia hết cho \(13\)