cho hàm số y=f(x)=(2-m)x
Giúp mình với ạ ! Cảm ơn mng nhìu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left|x\right|+x\)
Vì \(\left|x\right|\ge0\) nên ta có 3TH:
TH1: \(x>0\)
\(\Rightarrow\left|x\right|+x=2x\)
TH2: \(x=0\)
\(\Rightarrow\left|x\right|+x=0\)
TH3: \(x< 0\)
\(\Rightarrow\left|x\right|+x=0\)
Lời giải:
a. Để hàm trên là hàm bậc nhất thì $\frac{m-2}{m+3}\neq 0$
\(\Leftrightarrow \left\{\begin{matrix} m-2\neq 0\\ m+3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 2\\ m\neq -3\end{matrix}\right.\)
b. Để hàm trên đồng biến thì $\frac{m-2}{m+3}>0$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} m-2>0\\ m+3>0\end{matrix}\right.\\ \left\{\begin{matrix} m-2<0\\ m+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m>2\\ m< -3\end{matrix}\right.\)
Để hàm trên nghịch biến thì $\frac{m-2}{m+3}< 0$
\(\Leftrightarrow \left[\begin{matrix} \left\{\begin{matrix} m-2>0\\ m+3< 0\end{matrix}\right.\\ \left\{\begin{matrix} m-2< 0\\ m+3>0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -3> m>2(\text{vô lý}\\ -3< m< 2\end{matrix}\right.\Leftrightarrow -3< m< 2\)
Bài 1:
a. $y=(m-2m+3m-2m+3)x-2=3x-2$
Vì $3\neq 0$ nên hàm này là hàm bậc nhất với mọi $m\in\mathbb{R}$
b. Vì $3>0$ nên hàm này là hàm đồng biến với mọi $m\in\mathbb{R}$
Bài 2:
Đồ thị xanh lá cây: $y=-x+3$
Đồ thị xanh nước biển: $y=2x+1$
a, \(f\left(1\right)=\frac{3}{5}.1=\frac{3}{5}\); \(f\left(2\right)=\frac{3}{5}.2=\frac{6}{5}\)
b, Bảng giá trị:
x | 0 | 5 |
y = (3/5) . x | 0 | 3 |
Vậy đồ thị hàm số (3/5) . x là 1 đường thẳng đi qua gốc tọa độ O (0; 0) và điểm (5; 3)
c, Gọi hoành độ của M là xM
Vì M thuộc đồ thị hàm số và có tung độ bằng -3
=> -3 = xM . (3/5)
=> xM = -3 : (3/5)
=> xM = -5
Vậy tọa độ của điểm M là (-5 ; -3)
a) f (1 ) = 3/5 x 1 = 3/5
f (2) = 3/5 x 2 = 6/5
b) Bảng giá trị
x 0 5
y = ( 3/5) . x 0 3
Từ điểm A nằm ngoài đường tròn (O; R) với OA > 2R. Vẽ tiếp tuyến AB và cát tuyến ACD với (O) (B là tiếp điểm; AC < AD, tia AD không cắt đoạn thẳng OB). Gọi CE, DF là các đường cao của tam giác BCD.
a) Chứng minh: tứ giác DEFC nội tiếp và EF//AB.
b) Tia EF cắt AD tại G, BG cắt (O) tại H. Chứng minh: tam giác FHC đồng dạng tam giác GAB
c) Gọi I là giao điểm của CE và DF. Tia HI cắt DC tại M. Chứng minh: OM vuông góc với CD
Do \(\lim\limits_{x\rightarrow3}\dfrac{f\left(x\right)-2}{x-3}\) hữu hạn \(\Rightarrow f\left(x\right)-2=0\) có nghiệm \(x=3\)
Hay \(f\left(3\right)-2=0\Rightarrow f\left(3\right)=2\)
\(\Rightarrow I=\lim\limits_{x\rightarrow3}\left(\dfrac{f\left(x\right)-2}{x-3}\right).\dfrac{1}{\sqrt{5f\left(x\right)+6}+1}=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.f\left(3\right)+6}+1}\)
\(=\dfrac{1}{4}.\dfrac{1}{\sqrt{5.2+6}+1}=\dfrac{1}{20}\)
Đề bài yêu cầu gì?