1+1 giải giúp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
->1/1001 +1/1002 +...+ 1/2000 < 1/2000 + 1/2000+...+ 1/2000(1000 lần 1/2000 vì 1000 là số số hạng từ 1001 đến 2000, hiểu ý mình chứ) Mà 1/2000 * 1000 = 1000/2000 =1/2<3/4 =>1/1001 + 1/1002 +...+ 1/2000>3/4
Merry Christmas!!!!!!!
\(\frac{4}{9}:\frac{5}{7}=\frac{4}{9}\times\frac{7}{5}=\frac{4\times7}{9\times5}=\frac{28}{45}\)
\(\frac{5}{7}:\frac{4}{9}=\frac{5}{7}\times\frac{9}{4}=\frac{5\times9}{7\times4}=\frac{45}{28}\)
\(\frac{1}{3}:\frac{1}{4}=\frac{1}{3}\times4=\frac{4}{3}\)
\(\frac{1}{4}:\frac{1}{3}=\frac{1}{4}\times3=\frac{3}{4}\)
\(\dfrac{x-1}{x-3}>1\left(x\ne3\right)\)
\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)
\(\Leftrightarrow2>0\)
Vậy \(S=\left\{2\right\}\)
-ĐKXĐ: \(x\ne3\)
\(\dfrac{x-1}{x-3}>1\)
\(\Leftrightarrow\dfrac{x-1}{x-3}-\dfrac{x-3}{x-3}>0\)
\(\Leftrightarrow\dfrac{x-1-x+3}{x-3}>0\)
\(\Leftrightarrow\dfrac{2}{x-3}>0\)
\(\Leftrightarrow x-3>0\)
\(\Leftrightarrow x>3\)
-Vậy tập nghiệm của BĐT là {x l x>3}
Lời giải:
$A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}$
$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{20-19}{19.20}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}$
$=1-\frac{1}{20}=\frac{19}{20}$
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{9999}\)
\(A=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{99\times101}\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(A=\frac{1}{2}\times\frac{98}{303}\)
\(A=\frac{49}{303}\)
A= \(\frac{1}{15}\)+ \(\frac{1}{35}\)+ ... + \(\frac{1}{9999}\)
A= \(\frac{1}{3.5}\)+ \(\frac{1}{5.7}\) + ... + \(\frac{1}{99.101}\)
2. A= \(\frac{2}{3.5}\) + \(\frac{2}{5.7}\) + ... + \(\frac{2}{99.101}\)
2.A = \(\frac{1}{3}\) - \(\frac{1}{5}\)+ \(\frac{1}{5}\)-\(\frac{1}{7}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{101}\)
2.A= \(\frac{1}{3}\) - \(\frac{1}{101}\)
2.A= \(\frac{101}{303}\) - \(\frac{3}{303}\)
2.A= \(\frac{98}{303}\)
A = \(\frac{98}{303}\) : 2
A = \(\frac{49}{303}\)
Vay A=\(\frac{49}{303}\)
Gọi biểu thức trên là A, ta có:
\(A=\frac{1}{2\cdot15}+\frac{1}{15\cdot3}+\frac{1}{3\cdot21}+\frac{1}{21\cdot4}+...+\frac{1}{87\cdot90}\)
\(13A=\frac{13}{2\cdot15}+\frac{13}{15\cdot3}+\frac{13}{3\cdot21}+\frac{13}{21\cdot4}+...+\frac{13}{87\cdot90}\)
\(13A=\frac{1}{2}-\frac{1}{15}+\frac{1}{15}-\frac{1}{3}+\frac{1}{3}-\frac{1}{21}+\frac{1}{21}-\frac{1}{4}+...+\frac{1}{87}-\frac{1}{90}\)
\(13A=\frac{1}{2}-\frac{1}{90}\)
\(13A=\frac{22}{45}\)
\(A=\frac{22}{45\text{x}13}=\frac{22}{585}\)
ko đăng linh tinh
@congtibaocao
1+1=2
nhé
HT
đây là toán lớp 1 mà