A=1/2016+2/2016+3/2016+4/2016+.....+2015/2016
A=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ
=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ
Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn
mà 13 lẻ =>b chẵn
lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)
=> a\(\ne0\)ko thỏa mãn
Nếu a=0 => 2016a +13b-1=13b-1 lẻ
2016a+2016a +b =b+1 lẻ
=>(13b-1)(b+1)=2015
mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)
Do 13b-1 ko chia hết cho 3 , 13b-1>b+1
=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)
Vậy a=0,b=12
Ta xét các TH sau a=b=0,
a=1,b=0
a=0,b=1
thay vào thấy không thỏa mãn
vậy xét a>1 và b>1:
Nhận thấy: \(\left(2016a+13b-1\right)\left(2016^a+2016a+b\right)>\left(2016+13-1\right)\left(2016^1+2016+1\right)>2015\)
Vậy khong tồn tại a,b thỏa mãn
ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ
=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ
Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn
mà 13 lẻ =>b chẵn
lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)
=> a\(\ne0\)ko thỏa mãn
Nếu a=0 => 2016a +13b-1=13b-1 lẻ
2016a+2016a +b =b+1 lẻ
=>(13b-1)(b+1)=2015
mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)
Do 13b-1 ko chia hết cho 3 , 13b-1>b+1
=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)
Vậy a=0,b=12
a, - { -(2016 +2015) - [ - (2016 - 2015) - (2016+2015) ] }
= -{-(2016+2015)-[-0-0]}
= -{-4031-0-0}
=-4031
\(A=\frac{1}{2016}+\frac{2}{2016}+\frac{3}{2016}+...+\frac{2015}{2016}\)
\(A=\frac{1+2+3+...+2015}{2016}=\frac{2031120}{2016}=\frac{2015}{2}\)
ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ
=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ
Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn
mà 13 lẻ =>b chẵn
lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)
=> a\(\ne0\)ko thỏa mãn
Nếu a=0 => 2016a +13b-1=13b-1 lẻ
2016a+2016a +b =b+1 lẻ
=>(13b-1)(b+1)=2015
mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)
Do 13b-1 ko chia hết cho 3 , 13b-1>b+1
=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)
Vậy a=0,b=12
ta có 2015 là số lẻ => (2016a+13b-1).(2016a+2016a+b)lẻ
=> \(\hept{\begin{cases}2016a+13b-1\\2016^a+2016a+b\end{cases}}\)lẻ
Nếu a \(\ne0\)=>2016a chẵn =>13b-1 lẻ =>13b chẵn
mà 13 lẻ =>b chẵn
lúc đó 2016a+2016a +b chẵn(loại vì 2016a+2016+b phải lẻ)
=> a\(\ne0\)ko thỏa mãn
Nếu a=0 => 2016a +13b-1=13b-1 lẻ
2016a+2016a +b =b+1 lẻ
=>(13b-1)(b+1)=2015
mà b\(\in N\)=> (13b-1),(b+1)\(\inƯ\left(2015\right)\)
Do 13b-1 ko chia hết cho 3 , 13b-1>b+1
=>\(\hept{\begin{cases}13b-1=155\\b+1=13\end{cases}}\Rightarrow\hept{\begin{cases}b=12\\b=12\end{cases}}\Rightarrow b=12\)(thỏa mãn)
Vậy a=0,b=12
Ta có :A=\(\frac{1}{2016}+\frac{2}{2016}+...+\frac{2015}{2016}=\frac{1+2+...+2015}{2016}\)
Xét 1+2+ ... +2015 = \(\frac{2015\times2016}{2}=2031120\)---> A=\(\frac{2031120}{2016}=1007,5\)
=(1+2+3+...+2015)/2016=(2015.(2015+1):2)/2016=2031120/2016=2015/2