Tìm x:
3x(x - 16) - (x - 16) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(x+\frac{1}{2}\right)^2-\frac{1}{16}=0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
Mà \(\frac{1}{16}=\left(\frac{1}{4}\right)^2\)
\(\Rightarrow x+\frac{1}{2}=\frac{1}{4}\Rightarrow x=\frac{-1}{4}\)
Vậy ....
\(\left(3x+\frac{1}{2}\right)^2+\frac{25}{16}=0\)
\(\Rightarrow\left(3x+\frac{1}{2}\right)^2=\frac{-25}{16}\)
Vì \(\left(3x+\frac{1}{2}\right)^2\ge0\left(\forall x\in Z\right)\)
Nên x thuộc rỗng (không có giá trị của x)
Bài 1:
a) \(\Rightarrow3x^2+3x-2x^2-4x+x+1=0\)
\(\Rightarrow x^2=-1\left(VLý\right)\Rightarrow S=\varnothing\)
b) \(\Rightarrow\left(x-2020\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2020\\x=\dfrac{1}{2}\end{matrix}\right.\)
c) \(\Rightarrow\left(x-10\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-2\end{matrix}\right.\)
d) \(\Rightarrow\left(x+4\right)^2=0\Rightarrow x=-4\)
e) \(\Rightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-6\\x=7\end{matrix}\right.\)
f) \(\Rightarrow\left(5x-4\right)\left(5x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=-\dfrac{4}{5}\end{matrix}\right.\)
Bài 2:
a) \(\Rightarrow3x\left(x^2-4\right)=0\Rightarrow3x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-2\right)+5\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
Bài 2:
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
a, (3x-5)^2 - (x-1)^2 = 0
(3x-5-x+1)(3x-5+x-1) =0
(2x-4)(4x-6)=0
Do đó: 2x-4=0 hoặc 4x-6=0
Th1: 2x-4=0 => 2x=4
=> x=2
Th2: 4x-6=0 => 4x=6
=> x = 4/6 =2/3
Vậy x = 2 ; 2/3
Lời giải:
$\frac{2}{3}x(x^2-16)=0$
$\Leftrightarrow x=0$ hoặc $x^2-16=0$
$\Leftrightarrow x=0$ hoặc $(x-4)(x+4)=0$
$\Leftrightarrow x=0$ hoặc $x-4=0$ hoặc $x+4=0$
$\Leftrightarrow x=0$ hoặc $x=\pm 4$
Không có đáp án nào đúng.
a: 2x-1=0
nên 2x=1
hay x=1/2
b: 4x2-16=0
=>(x-2)(x+2)=0
=>x=2 hoặc x=-2
c: x2-2x=0
=>x(x-2)=0
=>x=0 hoặc x=2
1,-16+23+x=-16
=>23+x=-16-16
=>23+x=-32
=>x=-32-23
=>x=-55
2,2x-35=15
=>2x=15+35
=>2x=50
=>x=25
3,3x+17=12
=>3x=12-17
=>3x=-5
=>ko có x thỏa mãn
4,|x-1|=0
=>x-1=0
=>x=1
5,-13.|x|=-26
=>|x|=-26:-13
=>|x|=2
=>x=2 hoặc -2
1. -16+23+x=-16
23+x=(-16)-(-16)
23+x=(-16)+16
23+x=0
x=0-23
x=-23
2. 2x-35=15
2x=15+35
2x=50
x=50:2
x=25
3. 3x+17=12
3x=12-17
3x=-5
x=(-5):3
x=-5/3
4. /x-1/=0
/x/=0+1
/x/=1
=>x=1 hoặc x=-1
5. -13./x/=-26
/x/=(-26):(-13)
/x/=2
=>x=2 hoặc x=-2
a)-16+23+x=-16
7+x=-16
x=-16-7
x=-23
b)2.x-35=15
2.x=15+35
2.x=50
x=50:2
x=25
c)3.x+17=12
3.x=12-17
3.x=-5
x=-5:3
x=-1,(6)
d)Ix-1I=0
IxI=0+1
IxI=1
=>x=1 hoặc x=-1
e)-13.IxI=-26
IxI=-26:(-13)
IxI=2
=>x=2 hoặc x=-2
\(\left\{{}\begin{matrix}x-16=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=16\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left(x-16\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-16=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\\x=\dfrac{1}{3}\end{matrix}\right.\)