Tìm x,y \(\in\)N biết :2x+2y=256
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow2^y\left(2^{x-y}+1\right)=72\)
Vì \(2^{x-y}+1\) lẻ nên \(2^y\left(2^{x-y}+1\right)=72=2^3\cdot9\)
\(\Rightarrow\left\{{}\begin{matrix}y=3\\2^{x-3}+1=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=3\\2^{x-3}=8=2^3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=6\\y=3\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(6;3\right)\)
Ta có \(2^x-2^y=1024\Rightarrow x>y\)
Do đó \(2^y\left(2^{x-y}-1\right)=2^{10}\)
Lại có \(2^{x-y}-1\) lẻ và là ước 10 nên \(2^{x-y}-1=1\Rightarrow2^y=2^{10}\)
\(\Rightarrow y=10\Rightarrow2^{x-10}=2^1\Rightarrow x=11\)
Vậy \(\left(x;y\right)=\left(11;10\right)\)
a)
\(x+2y=5\Leftrightarrow x=5-2y\)
Thay vào ta được
\(M=\left(5-2y\right)^2+2y^2=25-20y+4y^2+y^2=6y^2-20y+25=6\left(y^2-\frac{10}{3}y+\frac{25}{9}\right)+\frac{25}{3}=6\left(y-\frac{5}{3}\right)^2+\frac{25}{3}\)
Mà \(6\left(y-\frac{5}{3}\right)^2\ge0\forall y\Leftrightarrow6\left(y-\frac{5}{3}\right)^2+\frac{25}{3}\ge\frac{25}{3}\)
Dấu '' = '' xảy ra \(\Leftrightarrow y=\frac{5}{3}\)
\(\Rightarrow x=\frac{5}{3}\)
\(\Rightarrow MinM=\frac{25}{3}\Leftrightarrow x=y=\frac{5}{3}\)