Chứng minh: n có chữ số tận cùng là k thì n^5 cũng có chữ số tận cùng là k
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu n tận cùng bằng chữ số lẻ khác 5 thì n^4 tận cùng bằng 1. Nếu n tận cùng bằng chữ số chẵn khác 0 thì n^4 tận cùng bằng 6
mk đánh nhầm
a) Xét hiệu 6n - n = 5n chia hết cho 10 (Do n chẵn) nên 6n và n có cùng chữ số tận cùng.
b) Xét n tận cùng 1, 3, 7, 9 ta thấy n4 đều tận cùng là 1.
Xét n tận cùng 2, 4, 6, 8 ta thấy n4 đều tận cùng là 6.
c) Tương tự
(Vì mấy bài này của lớp 6 nên mình không thể dùng cách ptđttnt được)
a, Xét : 6n-n = 5n
Vì n chẵn nên 5n có tận cùng là 0
=> n và 6n có chữ số tận cùng giống nhau
c, Xét : n^5-n = n.(n^4-1) = n.(n^2-1).(n^2+1) = (n-1).n.(n+1).(n^2-4+5) = (n-2).(n-1).n.(n+1).(n+2) + 5.(n-1).n.(n+1)
Ta thấy : n-2;n-1;n;n+1;n+2 là 5 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 10 ( vì 2 và 5 là 2 số nguyên tố cùng nhau )
Lại có : (n-1).n.(n+1) chia hết cho 2 nên 5.(n-1).n.(n+1) chia hết cho 10
=> n^5-n chia hết cho 10
=> n^5-n có tận cùng là 0
=> n^5 và n có chữ số tận cùng như nhau
Tk mk nha
a) Cách 1. Xét từng trường hợp n tận cùng bằng 0, 2, 4, 6, 8 thì 6n tận cùng cũng như vậy.
a) n là số chẵn
\(\Rightarrow\) n = 2k
\(\Rightarrow\) 6n = 12k
Vì 12 có tận cùng như 2 nên 12k có tận cùng như 2k.
\(\Rightarrow\) n và 6n có tận cùng như nhau
\(\Rightarrow\) ĐPCM
tui cũng bí câu này nè