cho S= 1-1/2+1/3-1/4+...+1/2021-1/2022 và P= 1/2012+1/2013+1/2014+...+1/2022. tìm giá trị (S+P)^2022
mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)
= \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)
= \(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)
g: \(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{19}{20}=\dfrac{1}{20}\)
h: \(=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot..\cdot\dfrac{100}{99}=\dfrac{100}{2}=50\)
f: \(A=1+\dfrac{1}{2^{2014}}\)
\(B=\dfrac{2^{2014}+1+1}{2^{2014}+1}=1+\dfrac{1}{2^{2014}+1}\)
mà \(2^{2014}< 2^{2014}+1\)
nên A>B
\(\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(8^2-576:3^2\right)\)
\(=\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(64-576:3^2\right)\)
\(=\left(1^1+2^2+3^3+4^4+...+2022^{2022}\right)\left(64-64\right)\)
\(=\left(1^1+2^2+3^3+4^4+2022^{2022}\right).0\)
\(=0\)
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + \(\dfrac{2022}{1}\)
B = \(\dfrac{1}{2002}\) + \(\dfrac{2}{2021}\) + \(\dfrac{3}{2020}\)+...+ \(\dfrac{2021}{2}\) + 2022
B = 1 + ( 1 + \(\dfrac{1}{2022}\)) + ( 1 + \(\dfrac{2}{2021}\)) + \(\left(1+\dfrac{3}{2020}\right)\)+ ... + \(\left(1+\dfrac{2021}{2}\right)\)
B = \(\dfrac{2023}{2023}\) + \(\dfrac{2023}{2022}\) + \(\dfrac{2023}{2021}\) + \(\dfrac{2023}{2020}\) + ...+ \(\dfrac{2023}{2}\)
B = 2023 \(\times\) ( \(\dfrac{1}{2023}\) + \(\dfrac{1}{2022}\) + \(\dfrac{1}{2021}\) + \(\dfrac{1}{2020}\)+ ... + \(\dfrac{1}{2}\))
Vậy B > C
\(...=2022+2020+\left(-2019+2016-2018+2015-2017+2014\right)+...+\left(6-3+5-2+4-1\right)\)
\(=2022+2020+\left(-3-3-3\right)+\left(-3-3-3\right)+...+\left(-3-3-3\right)+\left(-3-2-1\right)\)
\(=2022+2020+\left(-9\right)+\left(-9\right)+...\left(-9\right)+\left(-6\right)\)
\(=2022+2020+\left(-9\right).\left[\left(2019-9\right):6+1\right].\left[\left(2019+6\right)\right]:2+\left(-6\right)\)
\(=2022+2020+\left(-9\right).336.2025:2+\left(-6\right)\)
\(=2022+2020-3061800-6\)
\(=-3057764\)
2021^1=2021 đk ạ??