K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 1 2022

Không gian mẫu: \(C_{20}^5\)

a. Số biến cố thuận lợi: \(C_{12}^3.C_8^2\)

Xác suất: \(P=\dfrac{C_{12}^3.C_8^2}{C_{20}^5}=...\)

b. Các trường hợp thỏa mãn: (0 trắng, 5 đen), (1 trắng, 4 đen), (2 trắng, 3 đen)

\(\Rightarrow C_8^5+C_{12}^1.C_8^4+C_{12}^2.C_8^3\)

Xác suất: \(P=\dfrac{C_8^5+C_{12}^1.C_8^4+C_{12}^2.C_8^3}{C_{20}^5}=...\)

28 tháng 9 2017

Chọn D

Giả sử hộp 1 có  viên bi, trong đó có a viên bi đen.

Hộp 2 có y viên bi, trong đó có b viên bi đen.

x, y, a, b là những số nguyên dương, )

Từ giả thiết x + y = 20, 

Từ đó ta có xy chia hết cho 84

Mặt khác  suy ra xy = 84 ta được x = 14, y = 6

Thay vào (1) ta được ab = 55 nên a là ước của 55. Do a ≤ 14 nên a = 11 suy ra b = 5.

Vậy xác suất để lấy được 2 bi trắng 

8 tháng 10 2018

Chọn B

Lời giải.

Giả sử hộp thứ nhất có x viên bi, trong đó có a viên bi đen;

hộp thứ hai có y viên bi, trong đó có b viên bi đen

Điều kiện:  x , y , a , b  là các số nguyên dương và

Theo giả thiết, ta có

Từ ( 2 ) ⇔ 55 x y = 84 a b

suy ra xy chia hết cho 84

Mặt khác, ta có

nên xy = 84 (3)

Từ (1) và (3), ta được x = 14 y = 6

Từ (3) và (2), suy ra ab = 55 nên a là ước của 55

Lại có 55 6 ≤ 55 b = a ≤ 14  nên a = 11

Với a= 11, ta được b = 5

Vậy xác suất để được 2 bi trắng là

23 tháng 8 2019

Đáp án B

Gọi hộp 1 có x viên bi trong đó có y bi đen. Hộp 2 có a viên bi trong đó b bi đen.

Tng số bi của hai hộp 1 và 2 là x + a = 20 . số phần tử của không gian mầu là n Ω = x a . 

Goi X là biến cố lấy được 2 bi đen ⇒ n X = C y 1 . C b 1 = y b ⇒ P = n X n Ω = y b x a = 55 84 ⇔ 55 x a = 84 y b  

Do đó xa chia hêt cho 84 mà x a ≤ 1 4 x + a 2 = 100 → x = 6 a = 14  (vì x < a)  

Khi đó yb = 55 và y , b ∈ ℤ ⇒ y = 5 b = 11 .  Suy ra s bi trng hp 1 là 1, s bi trng hp 2 là 3.

Vây xác suất cần tính là P 0 = 1 . 3 6 . 14 = 1 28 .

22 tháng 12 2019

Gọi A:”lấy được 1 viên bi trắng, 1 viên vi đen, 1 viên bi đỏ”

Ta có n(A) = 7.6.3 = 126.

 Vậy 

Chọn B.

15 tháng 5 2023

`\Omega_1=C_9 ^1=9`

`\Omega_2=C_13 ^2=78`

`@TH1:`

Gọi `A:`"Lấy từ hộp thứ nhất viên bi trắng."

   `=>A=C_5 ^1=5`

   `=>P(A)=5/9`

Gọi `B:`" Lấy từ hộp thứ hai `2` viên bi trắng."

   `=>B=C_8 ^2=28`

  `=>P(B)=5/9 . 28/78=70/351`

`@TH2:`

Gọi `C:`"Lấy từ hộp thứ nhất viên bi xanh."

    `=>C=C_4 ^1=4`

        `=>P(C)=4/9`

Gọi `D:`" Lấy từ hộp thứ hai `2` viên bi trắng."

    `=>D=C_7 ^2=21`

         `=>P(D)=4/9 . 21/78=14/117`

9 tháng 10 2018

Đáp án C

NV
24 tháng 12 2021

Không gian mẫu: \(C_{11}^2\)

a. Số cách lấy ra 2 viên cùng màu:

\(C_5^2+C_2^2+C_4^2\)

Số cách lấy ra 2 viên khác màu: \(C_{11}^2-\left(C_5^2+C_2^2+C_4^2\right)\)

Xác suất: \(P=\dfrac{C_{11}^2-\left(C_5^2+C_2^2+C_4^2\right)}{C_{11}^2}=...\)

b. Số cách lấy ra 2 viên không có bi đỏ nào: \(C_6^2\)

Số cách lấy ra ít nhất 1 bi đỏ: \(C_{11}^2-C_6^2\)

Xác suất: \(P=\dfrac{C_{11}^2-C_6^2}{C_{11}^2}=...\)