K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

1/1x2+1/2x3+...+1/49x50

=1-1/2+1/2-1/3+.....+1/49-1/50

=1-1/50(1)

Ta co   1(2)

So sanh (1) voi (2) ta thay 1-1/50<1

=>1/1x2+...+1/49x50<1

(Phuong phap khu)

7 tháng 4 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)

=\(\frac{1}{1}-\frac{1}{50}=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}<1\)

Vậy \(\frac{49}{50}<1\)

24 tháng 8 2017

   \(\frac{1}{1x2}+\frac{1}{3x4}+....+\frac{1}{49x50}\)

\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{49}-\frac{1}{50}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)+\left(-\frac{1}{2}-\frac{1}{4}-.....-\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}......+\frac{1}{50}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+......+\frac{1}{25}\right)\)

\(=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)

2 tháng 5 2017

=1/2-1/3+1/3-1/4+.....+1/49+1/50

=1/2-1/50

=25/50-1/50

=24/50

=12/25

2 tháng 5 2017

\(\frac{1}{2x3}\)+   \(\frac{1}{3x4}\)+  ...  +  \(\frac{1}{49x50}\)

\(\frac{1}{2}\)-  \(\frac{1}{3}\)+  \(\frac{1}{3}\)-  \(\frac{1}{4}\)+  ...  +  \(\frac{1}{49}\)-  \(\frac{1}{50}\)

=  \(\frac{1}{2}\)-  \(\frac{1}{50}\)

=\(\frac{12}{25}\)

6 tháng 11 2017

\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{8x9}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

=\(1-\frac{1}{9}\)

=\(\frac{8}{9}\)

OK XONG NHỚ CHO MIK NHA

6 tháng 11 2017

\(\frac{1}{1\times2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+.......+\frac{1}{7x8}+\)\(\frac{1}{8x9}\)

=1-\(\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{8}-\frac{1}{9}\)

=1-\(\frac{1}{9}\)

=\(\frac{8}{9}\)

31 tháng 8 2020

\(C=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(C=1-\frac{1}{2018}\)

\(C=\frac{2017}{2018}\)

31 tháng 8 2020

\(C=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+.....+\frac{1}{2017x2018}\)

Ta thấy \(\frac{1}{1x2}=\frac{1}{1}-\frac{1}{2}\)

               \(\frac{1}{2x3}=\frac{1}{2}-\frac{1}{3}\)

      .............................................

           \(\frac{1}{2017x2018}=\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2017}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{1}{1}-\frac{1}{2018}\)

\(\Rightarrow C=\frac{2017}{2018}\)

Chúc bạn học tốt nhớ k mình nhá

18 tháng 3 2016

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}=\frac{99}{100}\)

k cho mình nha bạn

18 tháng 3 2016

=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

=1-1/100=99/100

29 tháng 4 2019

\(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(=1+\left(1-\frac{1}{2018}\right)\)

\(=1+\left(\frac{2018}{2018}-\frac{1}{2018}\right)\)

\(=1+\left(\frac{2017}{2018}\right)\)

\(=\frac{2018}{2018}+\frac{2017}{2018}=\frac{4035}{2018}\)

1 tháng 5 2019

\(1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}...+\frac{1}{2017\cdot2018}\)

\(=1+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}...+\frac{1}{2017}-\frac{1}{2018}\right)\)

\(=1+\left(1-\frac{1}{2018}\right)\)

\(=1+\frac{2017}{2018}\)

\(=1+\frac{2017}{2018}\)

\(=\frac{4035}{2018}\)