Chứng tỏ rằng bình phương của 1 số lẻ bằng tổng bình phương của 2 số tự nhiên liên tiếp trong đó số lớn cũng bằng tổng bình phương của 2 số tự nhiên liên tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 2 số tự nhiên liên tiếp đó là n và n+1 (với \(n\ge0\))
Theo đề bài ta có:
\(n^2+\left(n+1\right)^2=221\)
\(\Leftrightarrow n^2+n-110=0\Rightarrow\left[{}\begin{matrix}n=10\\n=-11\left(loại\right)\end{matrix}\right.\)
Vậy 2 số đó là 10 và 11
Cau hoi tuong tu nhe
Ban chi can doi so 5 thanh so 3 roi lam
Tick nha
Gọi 3 số tự nhiên liên tiếp lần lượt là a,a+1,a+2 (a \(\in\) N)
Có: a2+(a+1)2=(a+2)2
=>a2+a2+2a+1=a2+4a+4
=>a2+2a+1=4a+4
=>a2+1=2a+4
=>a2+1-2a-4=0
=>a2-2a-3=0
=>a2-3a+a-3=0
=>a(a-3)+(a-3)=0
=>(a+1)(a-3)=0
=>a=-1 hoặc a=3
Mà a \(\in\) N
=>a=3
Vậy STN nhỏ nhất là 3
Gọi 3 số đó là a ; a + 1 và a + 2
Có :
\(a^2+\left(a+1\right)^2=\left(a+2\right)^2\)
\(2a^2+2a+1=a^2+4+4a\)
\(\Rightarrow a^2=3+2a\)
\(a^2-2a-3=0\)
\(\left(a^2-3a\right)+\left(a-3\right)=0\)
\(\left(a-3\right)\left(a+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=3\\a=-1\end{cases}}\)
Mà a là số tự nhiên nên a = 3
Vậy ...
Lời giải:Gọi tổng bình phương của 5 số tự nhiên liên tiếp là:
$T=a^2+(a+1)^2+(a+2)^2+(a+3)^2+(a+4)^2$
$T=5a^2+20a+30=5(a^2+4a+6)=5[(a+2)^2+2]$
Vì $(a+2)^2$ là scp nên chia 5 dư $0,1,4$. Do đó $(a+2)^2+2$ chia $5$ dư $1,2,3$
$\Rightarrow T$ chia hết cho $5$ nhưng không chia hết cho $25$ nên $T$ không phải là scp.
Ta có đpcm.