cho tam giác ABC có 3 đường phân giác AD,BE,CF cắt nhau tại I.Tính góc IAC+gócIBC+gócIAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔBFC vuông tại F và ΔBDA vuông tại D có
\(\widehat{DBA}\) chung
Do đó: ΔBFC\(\sim\)ΔBDA
Suy ra: BF/BD=BC/BA
hay \(BF\cdot BA=BD\cdot BC\)
2: Ta có: BF/BD=BC/BA
nên BF/BC=BD/BA
Xét ΔBDF và ΔBAC có
BF/BC=BD/BA
\(\widehat{DBF}\) chung
Do đó: ΔBDF\(\sim\)ΔBAC
SUy ra: \(\widehat{BDF}=\widehat{BAC}\)
3: Xét tứ giác ABDE có
\(\widehat{ADB}=\widehat{AEB}=90^0\)
Do đó: ABDE là tứ giác nội tiếp
Suy ra: \(\widehat{BAC}+\widehat{BDE}=180^0\)
mà \(\widehat{CDE}+\widehat{BDE}=180^0\)
nên \(\widehat{CDE}=\widehat{BAC}\)
a: góc HDC+góc HEC=180 độ
=>HDCE nội tiếp
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
c: góc AFH+góc AEH=180 độ
=>AEHF nội tiếp
góc FEH=góc BAD
góc DEH=góc FCB
mà góc BAD=góc FCB
nên góc FEH=góc DEH
=>EH là phân giác của góc DEF
a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)
Do đó: tg HDB đồng dạng tg DCA (g.g)
Suy ra: HD/DC=BD/DA-> bd*dc=dh*da
b, HD/HA=SBHC/SABC
HE/BE=SAHC/SABC
HF/CF=SHAB/SABC
HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1
a: Xét tứ giác BCEF có
\(\widehat{BFC}=\widehat{BEC}=90^0\)
Do đó: BCEF là tứ giác nội tiếp
Xét tứ giác CDHE có
\(\widehat{CDH}+\widehat{CEH}=180^0\)
Do đó: CDHE là tứ giác nội tiếp
b: \(\widehat{FEB}=\widehat{BAD}\)(vì AFHE là tứ giác nội tiếp)
\(\widehat{BED}=\widehat{FCB}\)(BFEC là tứ giác nội tiếp)
mà \(\widehat{BAD}=\widehat{FCB}\)
nên \(\widehat{FEB}=\widehat{BED}\)
hay EB là tia phân giác góc FED