K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2015

Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên) 
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1) 
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2 
Nên k(k+1) chia hết cho 2 
=> 4k(k+1) chia hết cho 2*4=8 

VẬY TÍCH HAI SỐ TỰ NHIÊN LIÊN TIẾP CHIA HẾT CHO 8

1 tháng 3 2017

P(0) = a.02 + b.0 + c = m2 (m \(\in Z\))

=> P(0) = c = m2

P(1) = a.12 + b.1 + c = k2 (k \(\in Z\))

=> a + b = k2 - c = k2 - m2 là số nguyên (*)

P(2) = a.22 + b.2 + c = n2 (\(n\in Z\))

=> 4a + 2b + m2 = n2

=> 4a + 2b = n2 - m2 là số nguyên (1)

Từ (1) và (*) => 4a + 2b - 2.(a + b) nguyên

=> 2a nguyên => a nguyên

Kết hợp với (*) => b nguyên

Từ (1) => n2 - m2 chẵn (2)

=> (n - m)(n + m) chẵn

Mà n - m và n + m luôn cùng tính chẵn lẻ \(\forall m;n\in Z\)

Kết hợp với (2) \(\Rightarrow\left(n-m\right)\left(n+m\right)⋮4\)

hay n2 - m2 chia hết cho 4

Kết hợp với (1) => \(2b⋮4\)

=> b chia hết cho 2 => b chẵn

Ta có đpcm

19 tháng 9 2015

Số có 3 chữ số chẵn bé nhất chia hết cho 9 là: 108

Số có 3 chữ số chẵn lớn nhất chia hết cho 9 là :990

Số khoảng cách giữa 2 số là : 18

TBC tất cả các số chẵn có 3 chữ số chia hết cho 9 là :( 108 + 990 ) : 2 = 549

                                    ĐS : 549

Nhấn đúng cho mình nha, cảm ơn

3 tháng 1 2017

đề sai : đề thật nè  Chứng minh rằng m^3+20m chia hết cho 48 

  m = 2k thì 
(2k)^3 + 20*2k = 8k^3 + 40k = 8k(k^2 + 5) 
Cần chứng minh k(k^2 + 5) chia hết cho 6 là xong. 
+ nếu k chẵn => k(k^2 + 5) chia hết cho 2 
+ nếu k lẻ => k^2 lẻ => k^2 + 5 chẵn => k(k^2 + 5) chia hết cho 2 
Vậy k(k^2 + 5) chia hết cho 2 
+ nếu k chia hết cho 3 => k(k^2 + 5) chia hết cho 3 
+ nếu k chia 3 dư 1 => k^2 + 5 = (3l + 1)^2 + 5 = 9l^2 + 6l + 6 chia hết cho 3 
+ nếu k chia 3 dư 2 => k^2 + 5 = (3l + 2)^2 + 5 = 9l^2 + 12l + 9 chia hết cho 3 
Vậy k(k^2 + 5) chia hết cho 3 
=>dpcm

tk nha bạn

thank you bạn

(^_^)

3 tháng 1 2017

Lập luận quá sắc nét bái phục

2 tháng 1 2020

Hệ hai phương trình bậc nhất hai ẩn

2 tháng 1 2020

bạn kham khảo ở : https://hoc24.vn//hoi-dap/question/204989.html nhé

26 tháng 7 2019

de ma ban

16 tháng 3 2020

1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương 

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)