Y*3+y*2+y*4+y*4-125=325
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5: Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
nên x=5k; y=3k
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow25k^2-9k^2=4\)
\(\Leftrightarrow k^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm\dfrac{5}{4}\\y=\pm\dfrac{3}{4}\end{matrix}\right.\)
a) đặt \(\dfrac{3}{7x}=\dfrac{8}{13y}=\dfrac{6}{19z}=k\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7k}\\y=\dfrac{8}{13k}\\z=\dfrac{6}{19k}\end{matrix}\right.\)
Thay vào 2x -y-z=-6, ta được:
\(2\cdot\dfrac{3}{7k}-\dfrac{8}{13k}-\dfrac{6}{19k}=-6\Leftrightarrow\left(\dfrac{6}{7}-\dfrac{8}{13}-\dfrac{6}{19}\right)\cdot\dfrac{1}{k}=-6\Leftrightarrow\dfrac{1}{k}=\dfrac{5187}{64}\Leftrightarrow k=\dfrac{64}{5187}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{7k}=\dfrac{2223}{64}\\y=\dfrac{8}{13k}=\dfrac{399}{8}\\z=\dfrac{6}{19k}=\dfrac{819}{32}\end{matrix}\right.\)
Vậy.............
{số vẫn không đẹp mấy nhỉ T_T!!!}
\(\dfrac{3}{7}.x=\dfrac{8}{13}y=\dfrac{6}{19}z\)
\(\Rightarrow\)\(\dfrac{x}{\dfrac{7}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}\Rightarrow.\dfrac{2x}{\dfrac{14}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}\)
AD tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{\dfrac{14}{3}}=\dfrac{y}{\dfrac{13}{8}}=\dfrac{z}{\dfrac{19}{6}}=\dfrac{2x-y-z}{\dfrac{14}{3}-\dfrac{13}{8}-\dfrac{19}{6}}=\dfrac{-6}{\dfrac{-3}{24}}=48\)
\(\Rightarrow\)x=112;y=78;z=152
a: ta có: \(\dfrac{2x-5}{7x-1}=\dfrac{4x+3}{14x-9}\)
\(\Leftrightarrow\left(2x-5\right)\left(14x-9\right)=\left(7x-1\right)\left(4x+3\right)\)
\(\Leftrightarrow28x^2-18x-70x+45=28x^2+21x-4x-3\)
=>-88x+45=17x-3
=>-105x=-48
hay x=16/35
b: Sửa đề: \(\dfrac{x}{4}=\dfrac{y}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{9}=\dfrac{x-y}{4-9}=\dfrac{105}{-5}=-21\)
Do đó: x=-84; y=-189
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{2x-5y}{2\cdot3-5\cdot4}=\dfrac{56}{-14}=-4\)
Do đó:x=-12; y=-16
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x^2}{2}=\dfrac{y^2}{3}=\dfrac{x^2+y^2}{2+3}=\dfrac{125}{5}=25\)
Do đó: \(x^2=50;y^2=75\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{5\sqrt{2};-5\sqrt{2}\right\}\\y\in\left\{5\sqrt{3};-5\sqrt{3}\right\}\end{matrix}\right.\)
Bài 2:
a: \(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+9\left(x+1\right)^2=18\)
\(\Leftrightarrow-9x^2+27x+9x^2+18x+9=18\)
=>45x=9
=>x=1/5
b: \(\Leftrightarrow x^3-16x-x^3+125=13\)
=>-16x=-112
=>x=7
-9/4y=125-5/8=995/8
=>y=995/8:-9/4=-995/18
7/4:x=-5/6+2/3=-1/6
=>x=7/4:-1/6=-21/2
a. VP: \(\left(x+y\right)^{1999}\cdot\left(x-y\right)^{1999}=\left[\left(x+y\right)\left(x-y\right)\right]^{1999}\)
\(=\left(x^2-xy+xy-y^2\right)^{1999}=\left(x^2-y^2\right)^{1999}=VT\)
--> đpcm
b. VT: \(\dfrac{\left(5^4-5^3\right)^3}{125^4}=\dfrac{500^3}{125^4}=\dfrac{125^3\cdot4^3}{125^4}=\dfrac{4^3}{125}=\dfrac{64}{125}=VP\)
--> đpcm
(x+1)2=9
(x+1)2=32
=>x+1=3
x=2
(x-1)3=-125
=>(x-1)3=-53
=>x-1=-5
x=-5+1
x=-4
may bai kia giai tuong tu nhe minh met qua
1) (x+1)2 =9
=> x+1=3 hoặc x+1 = -3 (vì mũ chẵn)
=> x=2 hoặc x= -4
2) (x-1)3 = -125
=> x-1=-5
=> x=-4
4) Do x,y thuộc Z nên x-3 thuộc Z và y+1 thuộc Z
=> (x-3;y+1) thuộc {(-2;-1);(-1;-2);(1;2);(2;1)}
=> (x;y) thuộc {(1;-2);(2;-3);(2;1);(5;0)}
Bạn xem có đúng ko nhé rồi tick cho mk nha
y . 3 + y . 2 + y . 4 + y . 4 - 125 = 325
y . ( 3 + 2 + 4 + 4 ) - 125 = 325
y . ( 3 + 2 + 4 + 4 ) = 325 + 125
y . 13 = 450
y = 450 : 13
y = 34,61538462
y*3+y*2+y*4+y*4-125=325
y*(3+2+4+4)-125=325
y*13-125=325
y*13= 325+125=450
y=450/3
y=150
nhớ k nhé