K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2022

Không vẽ hình vì sợ duyệt nhé.

Tứ giác ADNM nội tiếp nên \(\widehat{ADM}=\widehat{ANM}\)

Tứ giác AMCD là hình vuông nên \(\widehat{ADM}=45^0\)

Từ đó \(\widehat{ANM}=45^0\)

Tứ giác BENM nội tiếp nên \(\widehat{ENM}+\widehat{EBN}=180^0\)\(\Rightarrow\widehat{ENM}=180^0-\widehat{EBM}\)

Tứ giác BMEF là hình vuông nên \(\widehat{EBM}=45^0\)

Từ đó \(\widehat{ENM}=180^0-45^0=135^0\)

Ta có \(\widehat{ANE}=\widehat{ANM}+\widehat{ENM}=45^0+135^0=180^0\)

Từ đó ta có A, N, E thẳng hàng.

5 tháng 4 2023

 Xác định M trên AB sao cho MN có độ dài lớn nhất

20 tháng 10 2017

Gọi OO là giao ÁC,MDÁC,MD

ˆCHA=90∘⇒HO=AC2=MD2⇒ˆDHM=90∘CHA^=90∘⇒HO=AC2=MD2⇒DHM^=90∘

Tương tự ˆFHM=90∘⇒ˆDHF=90circ⇒D,H,FFHM^=90∘⇒DHF^=90circ⇒D,H,F thẳng hàng

20 tháng 10 2017

Gọi II là giao DF,ACDF,AC

Đỏ ỐIỐI song song MF⇒IMF⇒I là trung điểm của DFDF

Kẻ II′⊥AB⇒I′II′⊥AB⇒I′ là trung điểm ABAB

Chứng minh II′=AB2⇒III′=AB2⇒I nằm trên đường trung trực của ABAB và cách ABAB một khoảng bằng AB2AB2 

13 tháng 9 2019

c) Ta có EF là đường trung trực của PM EP = EM ∆ EPM cân tại E

Mặt khác EPM = ACM = 60o (do AMPC là tứ giác nội tiếp) nên ∆ EPM đều

PE = PM . Tương tự PF = PM

Ta có CM // DB nên PCM = PBD

Mà BMPD là tứ giác nội tiếp nên  PBD = PMD. Suy ra PCM = PMD

Ta lại có CPM = DPM = 120o ⇒ Δ C P M ~ Δ M P D ( g . g ) ⇒ C P M P = P M P D ⇒ C P P F = P E P D

Theo định lý Talét đảo ta có CE // DF CDFE là hình thang.

11 tháng 1 2019

b) Vì AMPC là tứ giác nội tiếp nên

C P M = 180 o − C A M = 120 o = C M B ⇒ Δ C P M ~ Δ C M B ( g . g ) ⇒ C P C M = C M C B ⇒ C P . C B = C M 2 ⇒ C P . C B = C M .

Tương tự  D P . D A = D M

Vậy  C P . C B + D P . D A = C M + D M = A M + B M = A B