Cho tam giác ABC có góc B = góc C, kẻ AH vuông góc BC, H thuộc BC . Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh:
a) AB = AC
b) Tam giác ABD = Tam giác ACE
c) Tam giác ACD = Tam giác ABE
d) AH là tia phân giác của góc DAE
e) Kẻ BK vuông góc AD, CI vuông góc AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua
a: Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nên ΔABC cân tại A
hay AB=AC
b: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
c: Xét ΔACD và ΔABE có
AC=AB
CD=BE
AD=AE
Do đó: ΔACD=ΔABE
d: Ta có: ΔABC can tại A
mà AH là đường cao
nên H là trung điểm của BC
Ta có: DB+BH=DH
CE+CH=HE
mà DB=CE
và BH=CH
nên DH=HE
hay H là trung điểm của DE
Xét ΔADE có AD=AE
nên ΔADE cân tại A
mà AH là đường trung tuyến
nên AH là tia phân giác của góc DAE