Let I be the incentre of acute triangle ABC with \(AB\ne AC\). The incircle \(\omega\)of ABC is tangent to sides BC, CA and AB at D, E, F respectively. The line through D pependicular to EF meets \(\omega\)again at R. Line AR meets \(\omega\)again at P. The circumcircles of triangles PCE and PBF meet again at Q. Prove that lines DI and PQ meet on the line through A perpendicular to AI.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
12 tháng 4 2017
ta có:
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{3}{7}\)( do AD là tia phân giác của \(\widehat{BAC}\))
\(\Rightarrow\frac{BD}{BC}=\frac{3}{11}\)
Ta có:
\(\frac{ED}{AC}=\frac{BD}{BC}=\frac{3}{11}\Rightarrow ED=\frac{3AC}{11}=\frac{3.7}{11}=\frac{21}{11}\)
27 tháng 2 2017
I do not know how to answer this question. Stupid that staged shows English