Tìm \(n\in Z\)biết:
\(\frac{2n-1}{n+8}-\frac{n-14}{n+8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{2n-1-\left(n-14\right)}{n+8}=\frac{n+13}{n+8}\)
Để A thuộc Z thì \(n+13⋮n+8\Rightarrow n+13-\left(n+8\right)⋮n+8\)
\(\Rightarrow5⋮n+8\Rightarrow n+8\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
\(\Leftrightarrow n\in\left\{-7;-3;-9;-13\right\}\)
OK
\(\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{2n-1-\left(n-14\right)}{n+8}=\frac{n+13}{n+8}\)
\(=\frac{n+8+5}{n+8}=1+\frac{5}{n+8}\inℤ\Leftrightarrow\frac{5}{n+8}\inℤ\)
mà \(n\inℤ\)nên \(n+8\)là ước của \(5\)suy ra \(n+8\in\left\{-5,-1,1,5\right\}\Leftrightarrow n\in\left\{-13,-9,-7,-3\right\}\).
\(\frac{2n-1}{n+8}-\frac{n-14}{n+8}=\frac{n+13}{n+8}=\frac{n+8+5}{n+8}=1+\frac{5}{n+8}.\)
Để biểu thức là số nguyên thì n+8 là ước của 5
\(\Rightarrow n+8=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{-13;-9;-7;-3\right\}\)
\(\frac{2n-1}{n+8}-\frac{n-14}{n+8}\)
a, \(=\frac{\left(2n-1\right)-\left(n-14\right)}{n+8}\)
\(=\frac{2n-1-n+14}{n+8}\)
\(=\frac{n+13}{n+8}\)
Có : \(n+13=n+5+8\)
Vì \(n+8⋮n+8\)
\(=>5⋮n+8\)
\(=>n+8\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
TH1 : n + 8 = 1
n = 1 - 8
n = 7 ( thỏa mãn số nguyên tố )
Th2 : n + 8 = -1
n = -1 - 8
n = -9 ( không thỏa mãn )
TH3 : n + 8 = 5
n = 5 - 8
n = -3 ( không thỏa mãn )
Th4 : n + 8 = -5
n = -5 - 8
n = -13 ( thỏa mãn )
b, ( đã tìm ra ở phần a )
\(n\in\left\{7;-9;-3;-13\right\}\)
Tk mk nha :D
c, \(\frac{-32}{-2^n}=4\)
\(\Rightarrow-2^n=-32:4\)
\(\Rightarrow-2^n=-8\)
\(\Rightarrow-2^n=-2^3\Rightarrow n=3\)
d, \(\frac{8}{2^n}=2\)
\(\Rightarrow2^n=8:2\)
\(\Rightarrow2^n=4\)
\(\Rightarrow2^n=2^2\Rightarrow n=2\)
e, \(\frac{25^3}{5^n}=25\)
\(\Rightarrow5^n=25^3:25\)
\(\Rightarrow5^n=25^2\)
\(\Rightarrow5^n=5^4\Rightarrow n=4\)
i , \(8^{10}:2^n=4^5\)
\(\Rightarrow2^n=8^{10}:4^5\)
\(\Rightarrow2^n=\left(2^3\right)^{10}:\left(2^2\right)^5\)
\(\Rightarrow2^n=2^{30}:2^{10}\)
\(\Rightarrow2^n=2^{20}\Rightarrow n=20\)
k, \(2^n.81^4=27^{10}\)
\(\Rightarrow2^n=27^{10}:81^4\)
\(\Rightarrow2^n=\left(3^3\right)^{10}:\left(3^4\right)^4\)
\(\Rightarrow2^n=3^{30}:3^{16}\)
\(\Rightarrow2^n=3^{14}\)
\(\Rightarrow2^n=4782969\)Không chia hết cho 2 nên ko có Gt n thỏa mãn