K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{9}{x+y+z}\)

Đặt \(Q=x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge x+y+z+\dfrac{9}{x+y+z}\)

\(=x+y+z+\dfrac{1}{x+y+z}+\dfrac{8}{x+y+z}\)

Áp dụng BĐT Cô - si có :

\(\left(x+y+z\right)+\dfrac{1}{x+y+z}\ge2\sqrt{\left(x+y+z\right)\cdot\dfrac{1}{x+y+z}}=2\)

Do \(x+y+z\le1\Rightarrow\dfrac{8}{x+y+z}\ge8\)

Do đó : \(Q\ge8+2=10\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

NV
10 tháng 3 2021

\(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge x+y+z+\dfrac{9}{x+y+z}\)

\(VT\ge x+y+z+\dfrac{1}{x+y+z}+\dfrac{8}{x+y+z}\ge2\sqrt{\dfrac{x+y+z}{x+y+z}}+\dfrac{8}{1}=10\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)(x+x+y+z)\geq (1+1+1+1)^2\)

\(\Rightarrow \frac{2}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{16}{2x+y+z}\)

Hoàn toàn tương tự:

\(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\geq \frac{16}{x+2y+z}\)

\(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\geq \frac{16}{x+y+2z}\)

Cộng theo vế các BĐT vừa thu được:

\(\Rightarrow 4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow 16\geq 16\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\)

\(\Rightarrow \frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq 1\)

Ta có đpcm.

14 tháng 10 2018

Ta có :

\(\dfrac{1}{2x+y+z}=\dfrac{16}{16\left(x+x+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+2y+z}=\dfrac{16}{16\left(x+y+y+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}=\dfrac{16}{16\left(x+y+z+z\right)}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

Cộng từng vế của BĐT ta được :

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Vậy BĐT đã được chứng minh !

24 tháng 4 2023

Ta có bất đẳng thức AM-GM dạng phân thức sau: 

\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow \dfrac{1}{a+b}\le\dfrac{1}{4}(\dfrac{1}{a}+\dfrac{1}{b})\)

Dấu ''='' xảy ra khi và chỉ khi a=b

Quay lại bài toán: Áp dụng bđt trên, ta có:

\(\dfrac{1}{2x+y+z}=\dfrac{1}{(x+y)+(x+z)}\le\dfrac{1}{4}(\dfrac{1}{x+y}+\dfrac{1}{x+z})\\ \le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z})=\dfrac{1}{16}(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z})\)

Tương tự:

 \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z})\)\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z})\)

Cộng 3 phân thức lại, ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{4}(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z})=\dfrac{1}{4}.4=1\)

Dấu ''='' xảy ra khi và chỉ khi: \(x=y=z=\dfrac{3}{4}\)

6 tháng 11 2018

\(\dfrac{1}{2x+y+z}=\dfrac{1}{x+y+x+z}\le\dfrac{1}{4}.\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\)

\(\le\dfrac{1}{4}.\dfrac{1}{4}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)=\dfrac{1}{16}.\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Tuong tu : \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}.\left(\dfrac{2}{y}+\dfrac{1}{z}+\dfrac{1}{x}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}.\left(\dfrac{2}{z}+\dfrac{1}{y}+\dfrac{1}{x}\right)\)

=> \(VT\le\dfrac{1}{16}.\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{2}{y}+\dfrac{1}{z}+\dfrac{1}{x}+\dfrac{2}{z}+\dfrac{1}{y}+\dfrac{1}{x}\right)\)

= \(\dfrac{1}{16}.\left[4.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\right]=1\left(dpcm\right)\)

6 tháng 11 2018

Áp dụng bđt Cauchy-Schwarz:

\(\dfrac{1}{2x+y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}\right)\)

Cộng theo vế suy ra đpcm. \("="\Leftrightarrow x=y=z=\dfrac{3}{4}\)

7 tháng 3 2021

Áp dụng bđt phụ \(\dfrac{1}{A+B}\le\dfrac{1}{4}\left(\dfrac{1}{A}+\dfrac{1}{B}\right)\forall A,B>0\)

\(\dfrac{1}{2x+y+z}=\dfrac{1}{\left(x+y\right)+\left(x+z\right)}\le\dfrac{1}{4}\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)\) Tương tự: \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{z}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

\(\Rightarrow\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{4}{x}+\dfrac{4}{y}+\dfrac{4}{z}\right)=1\)

Dấu bằng xảy ra \(\Leftrightarrow x=y=z=\dfrac{3}{4}\)

7 tháng 3 2021

Này Nguyễn Trọng Chiến, mk ko hiểu cái chỗ \(\dfrac{1}{4}.\left(\dfrac{1}{x+y}+\dfrac{1}{x+z}\right)\le\dfrac{1}{16}.\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{x}+\dfrac{1}{z}\right)\)??? Sao suy ra được vậy bn??

NV
7 tháng 3 2021

\(\dfrac{1}{x+x+y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Tương tự: \(\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{3}{4}\)

7 tháng 3 2021

Mk ko hiểu cái dòng đầu Nguyễn Việt Lâm Giáo viên, bn có thể nói chi tiết cách phân tích cho mk đc ko??

8 tháng 12 2023

Ta có \(\dfrac{1}{x+1}+\dfrac{1}{y+2}+\dfrac{1}{z+3}\ge\dfrac{9}{x+y+z+6}\), do đó:

\(\dfrac{9}{x+y+z+6}\le1\) 

\(\Leftrightarrow x+y+z\ge3\)

Đặt \(x+y+z=t\left(t\ge3\right)\). Khi đó \(P=t+\dfrac{1}{t}\)

\(P=\dfrac{t}{9}+\dfrac{1}{t}+\dfrac{8}{9}t\)

\(\ge2\sqrt{\dfrac{t}{9}.\dfrac{1}{t}}+\dfrac{8}{9}.3\)

\(=\dfrac{2}{3}+\dfrac{24}{9}\)

\(=\dfrac{10}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}t=x+y+z=3\\x+1=y+2=z+3\end{matrix}\right.\)

\(\Leftrightarrow\left(x,y,z\right)=\left(2,1,0\right)\)

Vậy \(min_P=\dfrac{10}{3}\Leftrightarrow\left(x,y,z\right)=\left(2,1,0\right)\)

27 tháng 5 2017

\(P=1-\dfrac{1}{x+1}+1-\dfrac{1}{y+1}+1-\dfrac{1}{z+1}\)

\(P=3-\left(\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\right)\)

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có:

\(P\le3-\dfrac{\left(1+1+1\right)^2}{x+1+y+1+z+1}\le3-\dfrac{9}{1+3}=\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{3}\)

NV
9 tháng 12 2018

\(VT=\dfrac{\left(\dfrac{1}{z}\right)^2}{\dfrac{1}{x}+\dfrac{1}{y}}+\dfrac{\left(\dfrac{1}{x}\right)^2}{\dfrac{1}{y}+\dfrac{1}{z}}+\dfrac{\left(\dfrac{1}{y}\right)^2}{\dfrac{1}{x}+\dfrac{1}{z}}\ge\dfrac{\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2}{2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)}=\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)

Dâu "=" xảy ra khi \(x=y=z\)