Cho các số thực x, y thỏa mãn x+y=2. Tìm GTNN: A=x^3+y^3+3x^2y^2
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
A = x3 + y3 + 3x2.y2
= (x + y)3 - 3xy(x + y) + 3x2.y2
= 8 - 6xy + 3x2.y2
= 3(x2y2 - 2xy + 1) + 5
= 3(xy - 1)2 + 5
Do (xy - 1)2 >= 0 với mọi x, y nên 3(xy - 1)2 + 5 >= 5 với mọi x, y
--> A >= 5
Đẳng thức xảy ra khi x = y = 1.
Vậy GTNN của A là 5 (khi x = y = 1)