chứng minh (19^45+19^30) chia hết cho 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(2^{10}+2^{11}+2^{12}=2^{10}.\left(2^2+2+1\right)=2^{10}.7⋮7\)
b, \(19^{45}+19^{30}=19^{30}\left(19^{15}+1\right)\)
Mà \(19^{15}+1⋮\left(19+1\right)\Rightarrow19^{15}+1⋮20\Rightarrow19^{45}+19^{30}⋮20\)
Chú ý: Ý b áp dụng công thức \(a^{2n+1}+b^{2n+1}⋮\left(a+b\right)\)
ta có 19mux35.. chia hết cho 2 và 10
suy ra chia hết cho 2.10=20
Chứng minh
a) \(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{1000}\equiv\left(-1\right)^{1000}\equiv1\left(mod3\right)\Rightarrow2^{1000}-1\equiv0\left(mod3\right)\Rightarrowđpcm\)
b) \(19\equiv-1\left(mod20\right)\)
\(\Rightarrow19^{45}\equiv\left(-1\right)^{45}\equiv1\left(mod20\right);19^{30}\equiv\left(-1\right)^{30}\equiv1\left(mod20\right)\)
\(\Rightarrow19^{45}+19^{30}\equiv0\left(mod20\right)\Rightarrowđpcm\)
Ta có:
A= (5 + 52) + (53 + 54) + ..... + (519 + 520)
A= 30.1 + 52.30 + ..... + 518.30
A = 30.(1 + 52 + ....+518)
Vậy A chia hết cho 30 (dpcm)
Ta có : A= 5^1+5^2+...+5^20= (5+5^2)+(5^3+5^4)+...+(5^19+5^20)=5+5^2*(1+5+5^2+5^3+5^4+...+5^19)= 30*(1+5^2+5^3+5^4+...+5^19) chia hết cho 30
Vậy A chia hết cho 30
Trả lời:
1, \(27^{20}-3^{56}=\left(3^3\right)^{20}-3^{56}\)
\(=3^{60}-3^{56}\)
\(=3^{55}.\left(3^5-3\right)\)
\(=3^{55}.\left(243-3\right)\)
\(=3^{55}\times240\)\(⋮240\)
Vậy \(27^{20}-3^{56}\)chia hết cho 240
2, Ta có: \(3a+7b⋮19\)
\(\Leftrightarrow2.\left(3a+7b\right)⋮19\)
\(\Leftrightarrow6a+14b⋮19\)
\(\Leftrightarrow6a+33b-19b⋮19\)
\(\Leftrightarrow3.\left(2a+11b\right)-19b⋮19\)
Do \(19b\)chia hết cho 19. Theo t/c chia hết của 1 hiệu thì \(3.\left(2a+11b\right)⋮19\Leftrightarrow2a+11b⋮19\)
Vậy \(2a+11b\)chia hết cho 19
A=5+52+53+54+.......+519+520
=(5+52)+(53+54)+...+(519+520)
=1.(5+52)+52.(5+52)+...+518.(5+52)
=1.30+52.30+...+518.30
=30(1+52+...+518) chia hết cho 30
=>dpcm