Cho đường tròn tâm (0) và điểm S nằm bên ngoài đường tròn . TừS kẻ tiếp tuyến SA với đường tròn (0) (A là tiếp điểm) a,Chứng tỏ tam giác AOS vuông b,Qua A kẻ đường thẳng vuông góc với OS tại I, cắt đường tròn (0) tại B (B khác A) . C/M SB là tiếp tuyến của đường tròn (O) c,Kẻ đường kính AC của đường tròn (O) . Đường thẳng SC cắt đường tròn tại điểm thứ 2 là D . C/m góc SID = góc OCD
a: Xét (O) có
SA là tiếp tuyến
nên SA vuông góc với OA
hay ΔOAS vuông tại A
b: Xét ΔOAS và ΔOBS có
OA=OB
\(\widehat{SOA}=\widehat{SOB}\)
OS chung
Do đó: ΔOAS=ΔOBS
Suy ra: \(\widehat{OAS}=\widehat{OBS}=90^0\)
hay SB là tiếp tuyến của (O)