Cho 2 đa thức
A=x2 - 2yz + z2+2
B=3yz -z2 +5x2 - \(\frac{1}{3}\)
Tính
A+B
A-B
B-A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M + N = (x2 – 2yz + z2) + (3yz – z2 + 5x2)
= x2 – 2yz + z2 + 3yz – z2 + 5x2
= (x2 + 5x2) + (z2 – z2) + (-2yz + 3yz)
= 6x2 + yz
M – N = (x2 – 2yz + z2) – (3yz – z2 + 5x2)
= x2 – 2yz + z2 - 3yz + z2 - 5x2
= (x2 – 5x2) – (2yz + 3yz) + (z2 + z2)
= -4x2 – 5yz + 2z2
N – M = (3yz – z2 + 5x2) – (x2 – 2yz + z2)
= 3yz – z2 + 5x2 - x2 + 2yz - z2
= (3yz + 2yz) – (z2 + z2) + (5x2 – x2)
= 5yz – 2z2 + 4x2.
Ta có: C = 2(x2 - yz + z2 ) + 3(3yz - z2 + 5x2 )
= 2x2 - 2yz + 2z2 + 9yz - 3z2 + 15x2
= 17x2 - z2 + 7yz. Chọn B
Bài 1: P+Q=(5xyz+2xy-3x^2-11)+(15-5x^2+xyz-xy)
=5xyz+2xy -3x^2-11+15-5x^2+xyz-xy
=6xyz+xy-8x^2+4
P-Q=(5xyz+2xy-3x^2-11)-(15-5x^2+xyz-xy)
=5xyz+2xy -3x^2-11-15+5x^2-xyz-xy
=4xyz+xy+2x^2-26
Mình lm bài 1 thôi cn bài 2 thì mình ko có thời gian,nếu sai thì thôi nha
\(=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
\(=\left(x-1-y+z\right)\left(x-1+y-z\right)\)
\(x^2-2x+1-y^2+2yz-z^2\)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
\(=\left(x-1-y+z\right)\left(x-1+y-z\right)\)
b: \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
d: \(x^2+4x+3=\left(x+3\right)\left(x+1\right)\)
a: Ta có: \(x^2-xy-3x+3y\)
\(=x\left(x-y\right)-3\left(x-y\right)\)
\(=\left(x-y\right)\left(x-3\right)\)
b: Ta có: \(5x^2+5xy-x-y\)
\(=5x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(5x-1\right)\)
c: Ta có: \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
a) \(4x^2-9y^2+6x-9y\)
\(=\left(2x-3y\right)\left(2x+3y\right)+3\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+3\right)\)
b) \(1-2x+2yz+x^2-y^2-z^2\)
\(=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
\(=\left(x-y+z-1\right)\left(x+y-z-1\right)\)
Tick hộ mình nha 😘