tìm giá trị nhỏ nhất của biểu thức X=|3x-1|+(x+2y)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Ta có:
\(\left(x-\frac{1}{2}\right)^2\ge0;\left|3x+2y\right|\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left|3x+2y\right|+2006\ge2006\)
Dấu "=" xảy ra tại \(\hept{\begin{cases}x-\frac{1}{2}=0\\3x=-2y\end{cases}}\Rightarrow x=\frac{1}{2};y=-\frac{3}{4}\)
Vậy \(A_{min}=2006\Leftrightarrow x=\frac{1}{2};y=-\frac{3}{4}\)
GTNN:
\(\Leftrightarrow x^2+2\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}+1\)
\(\Leftrightarrow x^2+2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy Min của biểu thức trên =3/4 khi x+1/2=0 => x=-1/2
GTLL:
\(\Leftrightarrow-3\left(x^2-\frac{7}{3}x-\frac{1}{3}\right)\)
\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{49}{36}-\frac{1}{3}\right)\)
\(\Leftrightarrow-3\left(x^2-2.\frac{7}{6}x+\frac{49}{36}-\frac{61}{36}\right)\)
\(\Leftrightarrow-3\left[\left(x-\frac{7}{6}\right)^2-\frac{61}{36}\right]\)
\(\Leftrightarrow-3\left(x-\frac{7}{6}\right)^2+\frac{61}{12}\le\frac{61}{12}\)
Vậy Max của biểu thức trên = 61/12 khi x-7/6=0 => x=7/6
nha . cảm ơn . chúc bạn học tốt
a: Để \(\dfrac{3x-2}{4}\) không nhỏ hơn \(\dfrac{3x+3}{6}\) thì \(\dfrac{3x-2}{4}>=\dfrac{3x+3}{6}\)
=>\(\dfrac{6\left(3x-2\right)}{24}>=\dfrac{4\left(3x+3\right)}{24}\)
=>18x-12>=12x+12
=>6x>=24
=>x>=4
b: Để \(\left(x+1\right)^2\) nhỏ hơn \(\left(x-1\right)^2\) thì \(\left(x+1\right)^2< \left(x-1\right)^2\)
=>\(x^2+2x+1< x^2-2x+1\)
=>4x<0
=>x<0
c: Để \(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}\) không lớn hơn \(\dfrac{x^2}{7}-\dfrac{2x-3}{5}\) thì
\(\dfrac{2x-3}{35}+\dfrac{x\left(x-2\right)}{7}< =\dfrac{x^2}{7}-\dfrac{2x-3}{5}\)
=>\(\dfrac{2x-3+5x\left(x-2\right)}{35}< =\dfrac{5x^2-7\cdot\left(2x-3\right)}{35}\)
=>\(2x-3+5x^2-10x< =5x^2-14x+21\)
=>-8x-3<=-14x+21
=>6x<=24
=>x<=4
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
Ta có : A = x2 + 3x + 3
=> A = x2 + 3x + \(\frac{9}{4}+\frac{3}{4}\)
\(\Rightarrow A=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\) \(\ge\frac{3}{4}\forall x\in R\)
Vậy Amin = \(\frac{3}{4}\) khi \(x=-\frac{3}{2}\)
Từ gt ta có x^2+y^^2=xy+1
=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2
=(xy+1)2-2x2y2-x2y2
=x2y2+xy+1-3x2y2=-2x2y2+xy+1
=......
\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)
\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)
\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)
Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)
\(P=f\left(t\right)=-2t^2+2t+1\)
\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)
\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)
Áp dụng BĐT Bunyakovsky ta có:
\(\left(x+2y\right)^2=\left(x+\sqrt{2}.\sqrt{2}y\right)^2\le\left(1^2+\sqrt{2}^2\right)\left[x^2+\left(\sqrt{2}y\right)^2\right]\)
\(\Leftrightarrow\)\(\left(x+2y\right)^2\le3\left(x^2+2y^2\right)\)
\(\Leftrightarrow\)\(1\le3\left(x^2+2y^2\right)\) (do x + 2y = 1 )
\(\Leftrightarrow\)\(x^2+2y^2\ge\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+2y=1\\\frac{1}{x}=\frac{\sqrt{2}}{\sqrt{2}y}\end{cases}}\)\(\Leftrightarrow\)\(x=y=\frac{1}{3}\)
Vậy \(Min\)\(A=\frac{1}{3}\) \(\Leftrightarrow\)\(x=y=\frac{1}{3}\)
P/s: tham khảo thôi nhé, mk ko chắc đúng (yếu phần cực trị)
\(x^2+2y^2=\left(x+2y\right)^2\) mà \(x+2y=1=>\left(x+2y\right)^2=1^2=1\)
vậy A=1