K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2021

Ta có:

bpt \(\Leftrightarrow x+1\ge\sqrt{2\left(x^2-x+1\right)}-\sqrt{x}\)

\(\Leftrightarrow\left(x-1\right)^2\ge2\left(x^2-x+1\right)+x-2\sqrt{2x\left(x^2-x+1\right)}\)

\(\Leftrightarrow2\sqrt{2x\left(x^2-x+1\right)}\ge x^2+x+1\)

Áp dụng bđt Cosi ta có:

\(VT\le2x+x^2-x+1=x^2+x+1\)

Dấu '=' xảy ra khi \(2x=x^2-x+1\Leftrightarrow x=\frac{3-\sqrt{5}}{2}\)

NV
27 tháng 4 2021

\(f'\left(x\right)=\dfrac{1-x}{\sqrt{2x-x^2}}\)

\(f'\left(x\right)\ge1\Leftrightarrow\dfrac{1-x}{\sqrt{2x-x^2}}\ge1\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-x^2>0\\1-x>0\\\left(1-x\right)^2\ge2x-x^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}0< x< 2\\x< 1\\2x^2-4x+1\ge0\end{matrix}\right.\) \(\Rightarrow0< x\le\dfrac{2-\sqrt{2}}{2}\)

27 tháng 4 2021

f'(x)=\(\dfrac{2-2x}{2\sqrt{2x-x^2}}\) = \(\dfrac{1-x}{\sqrt{2x-x^2}}\)

để f'(x) \(\ge\) 1 \(\Leftrightarrow\) \(\dfrac{1-x}{\sqrt{2x-x^2}}\) \(\ge\) 1 \(\Leftrightarrow\) 1-x \(\ge\) \(\sqrt{2x-x^2}\) 

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}2x-x^2>0\\1-2x+x^2\ge2x-x^2\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}0< x< 2\\\left\{{}\begin{matrix}x< \dfrac{2-\sqrt{2}}{2}\\x>\dfrac{2+\sqrt{2}}{2}\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\) 0<x\(\le\) \(\dfrac{2-\sqrt{2}}{2}\)

NV
1 tháng 5 2020

ĐKXĐ: \(\left\{{}\begin{matrix}x>-2\\x\ne2\end{matrix}\right.\)

BPT tương đương:

\(\sqrt{x+2}\ge1\Leftrightarrow x\ge-1\)

Số nghiệm nguyên: \(2020+1=2021\)

NV
18 tháng 2 2020

ĐKXĐ: \(x\ge2\)

Khi đó ta có \(x^2-x+1\ge3\Rightarrow1-2\sqrt{x^2-x+1}< 0\)

Do đó BPT tương đương:

\(\sqrt{2\left(x^2+7x+3\right)}-\sqrt{x^2+x-6}-3\sqrt{x+1}\le0\)

\(\Leftrightarrow\sqrt{2x^2+14x+6}\le\sqrt{x^2+x-6}+3\sqrt{x+1}\)

\(\Leftrightarrow2x^2+14x+6\le x^2+10x+3+6\sqrt{\left(x+1\right)\left(x^2+x-6\right)}\)

\(\Leftrightarrow x^2+4x+3\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le6\sqrt{\left(x+1\right)\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+3\right)}\le6\sqrt{x-2}\)

\(\Leftrightarrow\left(x+1\right)\left(x+3\right)\le36\left(x-2\right)\)

\(\Leftrightarrow x^2-32x+75\le0\)

\(\Rightarrow16-\sqrt{181}\le x\le16+\sqrt{181}\)

NV
5 tháng 5 2020

ĐKXĐ: \(x\ge\frac{1}{4}\)

\(\sqrt{5x+1}\le3\sqrt{x}+\sqrt{4x-1}\)

\(\Leftrightarrow5x+1\le9x+4x-1+6\sqrt{4x^2-x}\)

\(\Leftrightarrow3\sqrt{4x^2-x}\ge1-4x\)

Do \(x\ge1\Rightarrow\left\{{}\begin{matrix}1-4x\le0\\\sqrt{4x^2-x}\ge0\end{matrix}\right.\) \(\Rightarrow\) BPT luôn đúng

Vậy nghiệm của BPT là \(x\ge\frac{1}{4}\)

b/ ĐKXĐ: \(x\ge4\)

\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}+x-3>7-x\)

\(\Leftrightarrow\sqrt{2\left(x^2-16\right)}>10-2x\)

- Với \(x>5\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\le5\) bình phương 2 vế:

\(2\left(x^2-16\right)>4\left(x-5\right)^2\)

\(\Leftrightarrow x^2-20x+66< 0\)

\(\Rightarrow10-\sqrt{34}< x< 10+\sqrt{34}\)

Vậy nghiệm của BPT là \(x>10-\sqrt{34}\)

4 tháng 5 2020

x-3 ; mình đánh thiếu

NV
5 tháng 3 2020

ĐKXĐ: \(\left[{}\begin{matrix}x>3\\x\le-1\end{matrix}\right.\)

- Với \(x>3\) BPT tương đương:

\(\left(x-3\right)\left(x+1\right)+2\sqrt{\left(x-3\right)\left(x+1\right)}-3< 0\)

\(\Leftrightarrow\left(\sqrt{\left(x-3\right)\left(x+1\right)}-1\right)\left(\sqrt{\left(x-3\right)\left(x+1\right)}+3\right)< 0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 1\)

\(\Leftrightarrow x^2-2x-4< 0\Rightarrow3< x< 1+\sqrt{5}\)

- Với \(x\le-1\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)-2\sqrt{\left(x-3\right)\left(x+1\right)}< 3\)

\(\Leftrightarrow\left(\sqrt{\left(x-3\right)\left(x+1\right)}+1\right)\left(\sqrt{\left(x-3\right)\left(x+1\right)}-3\right)< 0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)< 9\Leftrightarrow x^2-2x-12< 0\)

\(\Rightarrow1-\sqrt{13}< x\le-1\)

Vậy nghiệm của BPT là: \(\left[{}\begin{matrix}3< x< 1+\sqrt{5}\\1-\sqrt{13}< x\le-1\end{matrix}\right.\)