chung minh 2+2^2+2^3+...+2^60chia het cho 3;7;15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=1+2+2^2+2^3+.......+2^7
2xA = 2x(2^0+2^1+2^2+2^3+.....+2^7)
2xA = 2^1+2^2+2^3+2^4+.......+2^7+2^8
2xA+2^0 = (2^0+2^1+2^2+2^3+..+2^7)+2^8
2xA+1 = A+2^8
A+1 = 2^8 (cùng bớt 2 vế đi A)
A+1 = 256
A =256-1
A=255
vì 255chia hết cho 3
Suy ra A chia hết cho 3
Vậy A chia hết cho 3
b) B= 1+2+2^2+...+2^11
Bx2=2x(2^0+2^1+2^2+...+2^11)
Bx2=2^1+2^2+2^3+...+2^11+2^12
Bx2+2^0=(2^0+2^1+2^2+2^3+...+2^11)+2^12
Bx2+1=B+2^12
B+1=2^12(cùng bớt 2 vế đi B)
B+1=4096
B=4096-1
B=4095
Vì 4095 chia hết cho 9
Suy ra B chia hết cho 9
Vậy B chia hết cho 9
a) A=21+22+23+...+22010
A=(21+22)+(23+24)+.....+(22009+22010)
A=(21x3)+(23x3)+.....+(22009x3)
A=3x(21+23+.......+22009)
Vậy A chia hết cho 3.
NHỮNG CÂU CÒN LẠI BẠN LÀM TƯƠNG TỰ !
1. A = 2 + 22 + 23 + 24 + ... + 260
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 258 . 7
A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7
Vậy ...
2.Ta có : \(n+4⋮n+1\)
Mà : \(n+1⋮n+1\)
\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)
\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )
B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3
B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3
Vậy ...
A=2+22+23+24+....+230
=(2+22+23)+(24+25+26)+...+(228+229+230)
=1(2+22+23)+23(2+22+23)+...+227(2+22+23)
=1.7+23.7+25.7+...+227.7
=7(1+23+25+...+227)
vì 7:7-->A:7
\(A=2+2^2+2^3+2^4+...+2^{29}+2^{30}\)
\(=\left(2^{ }+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{28}+2^{29}+2^{30}\right)\)
\(=2.\left(1+2+2^2\right)+2^{^{ }4}.\left(1+2+2^2\right)+...+2^{28}.\left(1+2+2^2\right)\)
\(=2.7+2^4.7+...+2^{28}.7\)
\(=7.\left(2+2^4+...+2^{28}\right)\)
\(\Rightarrow A⋮7\)
\(A=2+2^2+2^3+....+2^{60}\)
\(=2\left(1+2+2^2+2^3+2^4+2^5\right)+....+2^{55}\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2\cdot63+....+2^{65}\cdot63⋮21\)
\(A=2+2^2+2^3+2^4....+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=2\cdot15+2^5\cdot15+...+2^{57}\cdot15⋮15\)
\(2^0+2^1+2^2+2^3=\left(2^0+2^1\right)+\left(2^2+2^3\right)=\left(2^0+2\right)+2^2.\left(2^0+2\right)=3+2^2.3=3.\left(1+2^2\right)\)chia hết cho 3
2^0 + 2^1 + 2^2 + 2^3 = 1 + 2 + 4 + 8 = 15
Vì 15 chia hết cho 3 => 2^0 + 2^1 + 2^ 2 + 2^3 chia hết cho 3
Goi S = 2 + 22 + 23 + 24 + ......+ 22016
<=> S = ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 22015 + 22016 )
<=> S = 2.( 1 + 2 ) + 23.( 1 + 2 ) + ....... + 22015.( 1 + 2 )
<=> S = 2.3 + 23.3 + ...... + 22015.3
<=> S = 3.( 2 + 23 + .... + 22015 )
Vì 3 chia hết cho 3 => S chia hết cho 3
Ta có S=1+2+22+23+...+259
\(\Rightarrow\)2S=2+22+23+24+...+260
\(\Rightarrow\)2S-S=260-1
do 2 chia 3 dư 1 \(\Rightarrow\)260 chia 3 dư 160\(\Rightarrow\)260 chia 3 dư 1
\(\Rightarrow\)260 -1 \(⋮\)3
Hay S\(⋮\)3 (dpcm)