Cho 2-5x/x-1. Hãy tìm x để 2-5x/x-1 là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x +2 = 5(x+1) - 3 chia hết cho x +1
=> x +1 thuộc U(3) = {-3;-1;1;3}
+ x +1 = -3 => x =-4
+x+1 =-1 => x =-2
+x+1 = 1 => x =0
+x+1 =3 => x =2
Vậy x thuộc {-4;-2;0;2}
Để f(x) nguyên thì
5x - 2 ⋮x - 1
=> 5x - 5 + 3 ⋮x - 1
=> 3 ⋮x - 1
=> x - 1 ={+-1 ; +-3}
=> x = { 0 ; 2 ; -2 ; 4 }
Để f(x) nguyên thì
5x - 2 \(⋮\)x - 1
=> 5x - 5 + 3 \(⋮\)x - 1
=> 3 \(⋮\)x - 1
=> x - 1 ={+-1 ; +-3}
=> x = { 0 ; 2 ; -2 ; 4 }
(a) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{x^2-5x+9}{x-3}\in Z\)
Ta có: \(\dfrac{x^2-5x+9}{x-3}\left(x\ne3\right)=\dfrac{x\left(x-3\right)-2\left(x-3\right)+3}{x-3}=x-2+\dfrac{3}{x-3}\)nguyên khi và chỉ khi: \(\left(x-3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\\x-3=3\\x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\\x=6\\x=0\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{0;2;4;6\right\}\).
(b) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{2x^3-x^2+6x+2}{2x-1}\in Z\left(x\ne\dfrac{1}{2}\right)\)
Ta có: \(\dfrac{2x^3-x^2+6x+2}{2x-1}=\dfrac{x^2\left(2x-1\right)+3\left(2x-1\right)+5}{2x-1}=x^2+3+\dfrac{5}{2x-1}\)
nguyên khi và chỉ khi: \(\left(2x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=3\\x=-2\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{-2;0;1;3\right\}\).
a: f(x) chia hết cho g(x)
=>x^2-3x-2x+6+3 chia hết cho x-3
=>3 chia hết cho x-3
=>x-3 thuộc {1;-1;3;-3}
=>x thuộc {4;2;6;0}
b: f(x) chia hết cho g(x)
=>2x^3-x^2+6x-3+5 chia hết cho 2x-1
=>5 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;3;-2}
a) Để 3x+7/x-1 có giá trị nguyên => 3x + 7 chia hết x - 1
=> 3(x-1) + 10 chia hết x - 1
Vì 3(x-1) chia hết x -1
=> 10 chia hết x - 1
=> x - 1 thuộc Ư(10)=.............Còn lại tự làm nha!
a)\(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=\frac{3\left(x-1\right)}{x-1}+\frac{8}{x-1}\in Z\)
=>8 chia hết x-1
=>x-1\(\in\){1,-1,2,-2,4,-4,8,-8}
=>x\(\in\){2,0,3,-1,5,-3,9,-7}