tổng các chữ số của số tự nhiên a kí hiệu là Sa
CM nếu Sa = S2a suy ra a chia hết cho 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta thấy với $a$ là số tự nhiên bất kỳ thì $a$ và $S(a)$ luôn có cùng số dư khi chia cho 9 nên:
$a-S(a)\vdots 9$
Tương tự với số tự nhiên $2a$ cũng vậy, $2a-S(2a)\vdots 9$
Suy ra:
$(2a-S(2a))-(a-S(a))\vdots 9$
Hay $a-(S(2a)-S(a))\vdots 9$
Hay $a\vdots 9$
2a và a có tổng các chữ số bằng nhau
2a; a có cùng số dư với tổng các chữ số của chúng khi chia cho 9
=> (2a - a) chia hết cho 9
=> a chia hết cho 9
1.
ta có : abc=100.a+10.b+c=n2-1
cba=100.c+10.b+a= [n-2]2=n2-4.n+4
=>99.[a-c]=4.n- 5
=>4.n -5 chia hết cho 9
vì 100\(\le\) abc\(\le\) 999
100\(\le\) n2-1\(\le\)999 => 101\(\le\) n2\(\le\) 1000 =>11 \(\le\) 31 => 39\(\le\) 4.n -5 \(\le\) 119
vì 4n-5 chia hết cho 99 nên 4n-5 =99 => n=29 => abc=675
Vậy là chữ số tận cùng của A là 5 (vì không thể là 0 do 3 số đầu không có tổng bằng 31 được)
Tổng 3 chữ số đầu là: 31 - 5= 26
26 = 9 + 9 + 8
Vậy số ban đầu có thể là: 998,5 hoặc 989,5 hoặc 899,5
Bài b)
Các số tự nhiên có 2 chữ số chia hết cho 9 là: 18, 27, 36, 45, 54, 63, 72, 81, 90, 99
Số tự nhiên chia 5 dư 2 có tận cùng là 2 hoặc 7
Vậy ta thấy có 27 và 72 là thoả mãn
Vậy số tự nhiên ab cần tìm là 27 hoặc 72