chứng tỏ với mọi m, n là các số nguyên dương thì mn(m^30-n^30) chia hết cho 14322
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
HT
0
NH
1
27 tháng 12 2016
4n+2 -3n+2 - 4n - 3n
= 4n+2 - 4n - 3n+2 - 3n
= 4n ( 42 - 1 ) - 3n ( 32 + 1 )
= 4n .15 - 3n.10
= 4n-1.4.15 - 3n-1.3.10
= 4n-1.60 - 3n-1.30
= 30.( 4n-1.2 - 3n-1 ) chia hết cho 30 ( đpcm )
12 tháng 2 2017
a) Lấy 2m+1-2(m-1)\(⋮\)2m+1.
Tìm các giá trị của 2m+1 rồi tìm m
b) Theo đề bài => /m/<2 để /3m-1/<3
14 tháng 4 2017
a)m-1 chia hết 2m+1
suy ra 2(m-1) chia hết cho 2m+1
\(\Rightarrow\)2m-2\(⋮\)2m+1
\(\Rightarrow\)2(m-1+1)-2\(⋮\)2m+1
15 tháng 11 2015
a chia hết cho m;n =>a là BC(m;n)
Mà m;n là 2 số nguyên tố cùng nhau =>BCNN(m;n)=m.n
=>BC(m;n)=B(m.n)={0;mn;2mn;3mn;4mn;.....}
=>a\(\in\){0;mn;2mn;3mn;4mn;...}
=>a chia hết cho mn(đpcm)
TQ
0
Ta có: \(mn\left(m^{30}-n^{30}\right)=mn\left[\left(m^{30}-1\right)-\left(n^{30}-1\right)\right]=nm\left(m^{30}-1\right)-mn\left(n^{30}-1\right)\)
Do đó, nếu ta chứng minh được với mọi số nguyên dương \(k\)thì \(k\left(k^{30}-1\right)⋮14322\)thì ta sẽ có đpcm.
Ta có: \(14322=2.3.7.11.31\).
Xét \(p\in\left\{2,3,7,11,31\right\}\). Nếu \(k\)chia hết cho \(p\)thì hiển nhiên \(k\left(k^{30}-1\right)\)chia hết cho \(p\). Nếu \(k\)không chia hết cho \(p\)thì \(k\)nguyên tố với \(p\). Theo định lí Fermat nhỏ, ta có: \(k^{p-1}-1⋮p\).
Mặt khác, với mọi \(p\in\left\{2,3,7,11,31\right\}\)ta có \(\left(p-1\right)|30\).
Từ đó suy ra: \(k^{30}-1⋮p\).
Do vậy \(k\left(k^{30}-1\right)⋮p\)với mọi \(p\in\left\{2,3,7,11,31\right\}\).
Vậy \(k\left(k^{30}-1\right)⋮14322\).
Từ đây ta có đpcm.