K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2018

Số 4/9 4/9 nhân hay cộng vậy

8 tháng 4 2016

đặt B=1/2.3+1/3.4+...+1/49.50

=1/1.2+1/2.3+1/3.4+...+1/49.50

=1-1/2+1/2-1/3+...+1/49-1/50

=1-1/50<1 (1)

Mà 1<2(2)

A =1/1+1/2.2+1/3.3+...+1/50.50<1-1/2+1/2-1/3+...+1/49-1/50 (3)

từ (1),(2),(3) =>A<2

8 tháng 4 2016

Ta có : \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{50^2}=1+\frac{1}{2^2}+........+\frac{1}{50^2}\)

=> \(A<1+\frac{1}{1.2}+\frac{1}{2.3}+.............+\frac{1}{49.50}\)

=> \(A<1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.........+\frac{1}{49}-\frac{1}{50}\)

=> \(A<2-\frac{1}{50}\Rightarrow A<2\)

Vậy A nhỏ hơn 2

4 tháng 1 2018

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của nguyenducminh - Toán lớp 6 - Học toán với OnlineMath

4 tháng 1 2018

A=\(\frac{1}{1^2}\)\(+\frac{1}{2^2}\)\(+\frac{1}{3^2}\)\(+...+\frac{1}{50^2}\)

A<1\(+\frac{1}{1.2}\)\(+\frac{1}{2.3}\)\(+...\frac{1}{49.50}\)

=1+1-\(-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{3}\)\(+...+\frac{1}{49}\)\(-\frac{1}{50}\)

=\(1+1-\frac{1}{50}\)

=\(2-\frac{1}{50}\)\(< 2\)

\(\Rightarrow A< 2\)

4 tháng 12 2019

Nhanh lên nhé

4 tháng 12 2019

Giups mnihf đi

5 tháng 4 2016

\(P=\frac{99}{50}-\frac{97}{49}+...+\frac{7}{4}-\frac{5}{3}+\frac{3}{2}-1\)

\(=2.\left(\frac{99}{100}-\frac{97}{98}+...+\frac{7}{8}-\frac{5}{6}+\frac{3}{4}-\frac{1}{2}\right)\)

\(=2\left[\left(1-\frac{1}{100}\right)-\left(1-\frac{1}{98}\right)+...+\left(1-\frac{1}{8}\right)-\left(1-\frac{1}{6}\right)+\left(1-\frac{1}{4}\right)-\left(1-\frac{1}{2}\right)\right]\)

22 tháng 2 2018

Ta có : 

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010.2011}\)\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}=1-\frac{1}{2011}=\frac{2010}{2011}>\frac{2010}{2680}=\frac{3}{4}\)

Hình như có gì đó sai sai :')

22 tháng 2 2018

A+1/4=1/2+1/32+......+1/20112

A+1/4<1/2+1/2*3 +1/3*4 +....1/2010*2011

A+1/4<1-1/2011<1=3/4+1/4

A<1/4 (ĐPCM)