Giúp mình với 🥺
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc là biến đổi trong bài tìm pt mặt phẳng
Từ hệ 2 pt đầu ta rút ra được: \(\left\{{}\begin{matrix}c=-a-b\\d=2a+b\end{matrix}\right.\)
Thế vào pt cuối:
\(\dfrac{\left|3a-b\right|}{\sqrt{a^2+b^2+\left(a+b\right)^2}}=\dfrac{3}{\sqrt{2}}\)
\(\Rightarrow2\left(3a-b\right)^2=9\left(a^2+b^2\right)+9\left(a+b\right)^2\)
\(\Rightarrow15ab+8b^2=0\Rightarrow\left[{}\begin{matrix}b=0\\b=-\dfrac{15a}{8}\end{matrix}\right.\)
Câu 1.
Tờ vé số có dạng \(\overline{a_1a_2a_3a_4a_5a_6}\in A=\left\{0;1;2;3;4;5;6;7;8;9\right\}\)
\(;a_i\ne a_j\)
Chọn \(a_1\ne0\) nên \(a_1\) có 9 cách chọn.
5 số còn lại là chỉnh hợp chập 5 của 8 số còn lại \(\in A\backslash\left\{a_1\right\}\)
\(\Rightarrow\)Có \(A_8^5\) cách.
Vậy có tất cả \(A_8^5\cdot9=60480\) vé số.
\(A=\left(t+2\right)\left(3t-1\right)-t\left(3t+3\right)-2t+7\)
\(=3t^2-t+6t-2-3t^2-3t-2t+7\)
\(=\left(3t^2-3t^2\right)-\left(t-6t+3t+2t\right)-\left(2-7\right)\)
\(=0-0-\left(-5\right)=5\)
A=(t+2)(3t−1)−t(3t+3)−2t+7A=(t+2)(3t−1)−t(3t+3)−2t+7
=3t2−t+6t−2−3t2−3t−2t+7=3t2−t+6t−2−3t2−3t−2t+7
=(3t2−3t2)−(t−6t+3t+2t)−(2−7)=(3t2−3t2)−(t−6t+3t+2t)−(2−7)
=0−0−(−5)=5
a.
D chia CB theo tỉ số \(k=2\Rightarrow\)\(\overrightarrow{DC}=2\overrightarrow{DB}\)
\(\Rightarrow\overrightarrow{DC}-\overrightarrow{DB}=\overrightarrow{DB}\Rightarrow\overrightarrow{DC}+\overrightarrow{BD}=\overrightarrow{DB}\)
\(\Rightarrow\overrightarrow{BC}=\overrightarrow{DB}\Rightarrow\overrightarrow{BC}+\overrightarrow{BD}=\overrightarrow{0}\)
\(\Rightarrow\) B là trung điểm CD hay D là điểm đối xứng C qua B
Do M là trung điểm AB \(\Rightarrow\overrightarrow{MA}=-\overrightarrow{MB}\)
\(\overrightarrow{CA}.\overrightarrow{CB}=\left(\overrightarrow{CM}+\overrightarrow{MA}\right)\left(\overrightarrow{CM}+\overrightarrow{MB}\right)=\left(2\overrightarrow{CI}-\overrightarrow{MB}\right)\left(2\overrightarrow{CI}+\overrightarrow{MB}\right)\)
\(=4\overrightarrow{CI}^2-\overrightarrow{MB}^2=4CI^2-MB^2\)
b.
\(2\left(1-cos^2C\right)+3cosC=0\Leftrightarrow-2cos^2C+3cosC+2=0\Rightarrow\left[{}\begin{matrix}cosC=2>1\left(loại\right)\\cosC=-\dfrac{1}{2}\end{matrix}\right.\)
Mặt khác: \(cosC=\dfrac{AC^2+BC^2-AB^2}{2AC.BC}=\dfrac{20-AB^2}{16}=-\dfrac{1}{2}\)
\(\Rightarrow AB^2=28\Rightarrow AB=2\sqrt{7}\)
\(\Rightarrow cosB=\dfrac{AB^2+BC^2-AC^2}{2AB.BC}=\dfrac{5\sqrt{7}}{14}\)
\(\Rightarrow CH=BC.\sqrt{1-cos^2B}=\dfrac{2\sqrt{21}}{7}\)
\(BM=\dfrac{1}{2}AB=\sqrt{7}\Rightarrow CM=\sqrt{BM^2+BC^2-2BM.BC.cosB}=\sqrt{3}\)
Áp dụng công thức trung tuyến:
\(BI=\dfrac{\sqrt{2\left(BM^2+BC^2\right)-CM^2}}{2}=...\)