cho a>o,b>0,c>o va a+b+c=1
chung minh: (1+a)(1+b)(1+c)>=8(1-a)(1-b)(1-c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)
\(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\Leftrightarrow a^2+b^2+c^2+2.0=1\)
=> dpcm
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)
\(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=1\)
\(\Leftrightarrow a^2+b^2+c^2+2.0=1\)
\(\Leftrightarrow a^2+b^2+c^2=1\)
Đề: Cho \(a+b+c=1\) và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Chứng minh: \(a^2+b^2+c^2=1\)
-----------------------------------------
Từ \(a+b+c=1\)
\(\Rightarrow\) \(\left(a+b+c\right)^2=1\)
\(\Leftrightarrow\) \(a^2+b^2+c^2+2\left(ab+bc+ca\right)=1\) \(\left(1\right)\)
Mặt khác, ta lại có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) \(\Leftrightarrow\) \(\frac{ab+bc+ca}{abc}=0\) \(\Leftrightarrow\) \(ab+bc+ca=0\) \(\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\), suy ra \(a^2+b^2+c^2=1\) \(\left(đpcm\right)\)
2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c
Ta có
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a^2bc+ab^2c+abc^2}{a^2b^2c^2}=\frac{abc\left(a+b+c\right)}{a^2b^2c^2}=0\)
Ta lại có
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)
Từ đó
\(\Rightarrow\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)